Search results

Search for "magnetic resonance imaging" in Full Text gives 74 result(s) in Beilstein Journal of Nanotechnology.

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • magnetic resonance imaging (MRI) (for more on this topic consult [11][12][13][14]). Among the abovementioned nanoscience products, iron oxide nanoparticles, especially superparamagnetic iron oxide nanoparticles (SPIONs) hold a lot of promise in many domains, not only regarding biology [15]. SPIONs consist
  • of 2000–2019. Review Benefits of SPIONs or what makes SPIONs such a promising aspect for therapeutics and adjunct treatments Firstly, certain SPIONs are already clinically approved for magnetic resonance imaging (MRI) [24][25][26]. For this application, SPIONs have been functionalized with dextran
PDF
Album
Review
Published 27 Jul 2020

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • multimodal magnetic resonance imaging (MRI) technique has been extensively studied over the past few years since it offers complementary information that can increase diagnostic accuracy. Simple methods to synthesize contrast agents are necessary for the development of multimodal MRI. Herein, uniformly
  • -dihydroxyhydrocinnamic acid (DHCA); dual-mode imaging; Fe3O4/Gd2O3-DHCA nanocubes; gadolinium oxide (Gd2O3); iron(II,III) oxide (Fe3O4); magnetic resonance imaging (MRI); Introduction Magnetic resonance imaging (MRI) is a noninvasive technique that has been broadly used in the clinical field to assist in disease
  • collected with an inverted phase-contrast microscope (Nikon, TiS, Japan). In vivo magnetic resonance imaging All the animal experiments were performed in compliance with the guidelines for animal experimentation from the Shanxi Medical University. MRI was performed in three Sprague Dawley (SD) rats that
PDF
Album
Full Research Paper
Published 08 Jul 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • addition of Gd3+ ions (magnetic resonance imaging, MRI) or 64Cu2+ (positron emission tomography, PET). A pH-sensitive acetal bond between poly(ε-caprolactone) and porphyrin was used to release porphyrin at pH 5 (Figure 5c) [79]. In a poly(ethylene glycol)-block-poly(ε-caprolactone) polymer conjugated with
PDF
Album
Review
Published 15 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • is simultaneously employed as a contrast agent in magnetic resonance imaging (MRI) and for local heating therapy using magnetic particle hyperthermia [33]. In vitro hyperthermia tests showed efficiency in inoculating mouse breast cancer cells. Another study reports the use of alendronate-coated gold
PDF
Editorial
Published 20 Dec 2019

Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields

  • Nikolai A. Usov,
  • Ruslan A. Rytov and
  • Vasiliy A. Bautin

Beilstein J. Nanotechnol. 2019, 10, 2294–2303, doi:10.3762/bjnano.10.221

Graphical Abstract
  • ; viscous liquid; Introduction Magnetic nanoparticles are promising materials in various areas of biomedicine [1][2][3][4], such as magnetic resonance imaging [5][6][7], targeted drug delivery [8][9][10], and magnetic hyperthermia [11][12][13][14][15][16][17][18][19][20]. Iron oxide nanoparticles are most
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2019

Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation

  • B. Rabindran Jermy,
  • Vijaya Ravinayagam,
  • Widyan A. Alamoudi,
  • Dana Almohazey,
  • Hatim Dafalla,
  • Lina Hussain Allehaibi,
  • Abdulhadi Baykal,
  • Muhammet S. Toprak and
  • Thirunavukkarasu Somanathan

Beilstein J. Nanotechnol. 2019, 10, 2217–2228, doi:10.3762/bjnano.10.214

Graphical Abstract
  • (magnetic resonance imaging), tissue repair, and thermal ablation have been gaining considerable attention in recent years. In particular, the use of superparamagnetic iron oxide nanoparticles (SPIONs) is now advantageous as they are FDA-approved for clinical use [2]. Magnetic Fe3O4-based mesoporous silica
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • diamond with unique properties for use in ultra-sensitive, high-resolution magnetometry. One of the most interesting and challenging applications is nanoscale magnetic resonance imaging (nano-MRI). While many review papers have covered other NV centers in diamond applications, there is no survey targeting
  • methods, this review presents a survey of the latest advances in NV center nano-MRI. Keywords: nanodiamonds; nanoscale magnetic resonance imaging (nano-MRI); nitrogen-vacancy center; optically detected magnetic resonance; Review Introduction Spin echoes and free induction decays were first detected in
  • image resolution on the molecular or even the atomic scale. This has given rise to the investigation of nanoscale magnetic resonance imaging (nano-MRI) [5]. Different nano-MRI technologies have been proposed that are based on different sensors. Some of these technologies use the nitrogen-vacancy (NV
PDF
Album
Review
Published 04 Nov 2019

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  • Da Shi,
  • Justine Wallyn,
  • Dinh-Vu Nguyen,
  • Francis Perton,
  • Delphine Felder-Flesch,
  • Sylvie Bégin-Colin,
  • Mounir Maaloum and
  • Marie Pierre Krafft

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Graphical Abstract
  • conjunction with focused ultrasound, and under magnetic resonance imaging guidance, for achieving blood/brain and blood/tumor barrier crossing of drugs [11][12]. Medical MBs have a shell consisting of surfactants, phospholipids, or polymers and are usually stabilized by a fluorocarbon gas [13] that acts as an
  • signal for energy deposition, as is required for sonothrombolysis or ablation surgery. MBs incorporating iron oxide nanoparticles (IONPs) are sought after as dual contrast agents for ultrasound and magnetic resonance imaging [18][19][20] and drug delivery [21][22]. The shells of the presently available
  • have been investigated for hyperthermia and magnetic resonance imaging owing to their increased stability in aqueous media and biocompatibility [27][28]. An even stronger anchoring agent consisting of a dendron structure bearing a bisphosphonate polar head provided increased colloidal stability in
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • toxicity, biocompatibility, immunogenicity, distribution and the payload being carried. Modified protein cages are robust systems that combine imaging capabilities and target selectivity on the same platform. One application is the development of magnetic resonance imaging (MRI) contrast agents. Current
PDF
Album
Full Research Paper
Published 07 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • Background: One of the future applications of magnetic nanoparticles is the development of new iron-oxide-based magnetic resonance imaging (MRI) negative contrast agents, which are intended to improve the results of diagnostics and complement existing Gd-based contrast media. Results: Iron oxide
  • genomic and proteomic analysis [5], for drug delivery [6], as magnetic resonance imaging (MRI) contrast agents [7], and for magnetic hyperthermia [8]. This wide variety of applications is due to the unique combination of magnetic, optical and chemical properties that are characteristic of MNPs. However
PDF
Album
Full Research Paper
Published 02 Oct 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • digestion and suspended in 0.5 mL of PBS (0.01 M, pH 7.4) and analyzed with flow cytometry (BD, USA) at 488 nm. In vivo T2-weighted magnetic resonance imaging (MRI) of intracranial glioblastoma with PEG-SPIONs Intracranial glioblastoma models were established as previously described [40][41]. In brief, 5
  • through the blood–tumor barrier. Second, bimodal imaging combining magnetic resonance imaging and optical imaging provides a more accurate means for accurate diagnosis of glioblastoma. Third, the nanoprobe has good targeting to overexpressed EGFRvIII in glioblastoma and thus establishes a foundation for
  • bimodal imaging capability, this novel and versatile multimodal nanoprobe could bring a new perspective for elucidating intracranial glioblastoma preoperative diagnosis and the accuracy of tumor resection. Keywords: epidermal growth factor receptor variant III (EGFRvIII); glioblastoma; magnetic resonance
PDF
Album
Full Research Paper
Published 11 Sep 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • magnetocrystalline anisotropy at room temperature [10]. The anisotropy constant of CoFe2O4 (K = 2 × 105 J·m−3) is nearly one order of magnitude larger than that of Fe3O4 [11][12][13]. Fe3O4 NPs have been studied extensively for bio-medical applications, such as drug delivery [14], magnetic resonance imaging (MRI
PDF
Album
Full Research Paper
Published 03 Jul 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • implications in various fields of nanotechnology such as biomedicine, magnetic data storage and sensors [1][2][3][4][5][6]. Concerning the biomedical applications, the magnetic relaxation of nanoparticles is of key interest in magnetic resonance imaging (through the influence of the relaxation time of the
PDF
Album
Full Research Paper
Published 24 Jun 2019

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • and agarose phantom systems) showed the best characteristics for application as contrast agents in magnetic resonance imaging and for local heating using magnetic particle hyperthermia. Due to the octahedral shape and the large saturation magnetization of the magnetite particles, we obtained an
  • hyperthermia; magnetic resonance imaging; nanomagnetism; theranostics; Introduction Biocompatible magnetite nanoparticles (NPs) are anticipated to provide new noninvasive therapies and early diagnostics for previously incurable diseases using a single, so-called “theranostics” platform [1][2][3]. The magnetic
  • properties of Fe3O4 NPs give rise to novel therapeutic approaches such as magneto-mechanical cancer treatment [4] and magnetic particle hyperthermia (MPH) [5][6][7] as well as to improvements in diagnostic techniques like magnetic resonance imaging (MRI) [8][9][10] and magnetic particle imaging (MPI) [11][12
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • therapeutic performance of the anticancer agents and reduced non-specific toxicity to normal cells. Moreover, the strong magnetic susceptibility of the nanoparticles enables magnetic targeting, and the accumulation of these particles can be monitored by magnetic resonance imaging (MRI). Magnetic targeting is
PDF
Album
Full Research Paper
Published 25 Sep 2018

Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles

  • Christian D. Ahrberg,
  • Ji Wook Choi and
  • Bong Geun Chung

Beilstein J. Nanotechnol. 2018, 9, 2413–2420, doi:10.3762/bjnano.9.226

Graphical Abstract
  • healthcare significantly [5]. For example, a composite nanomaterial has been developed as a photosensitizer in photothermal therapy (PTT), while also acting as a contrast agent for magnetic resonance imaging (MRI) [6]. Magnetic materials are of particular interest here, as they can be used for targeting [7
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • coercivity in the absence of an external magnetic field [1][2]. Their colloidal suspensions are vital in a variety of technological [3] and biomedical applications [4], such as contrast agents in magnetic resonance imaging (MRI) [5][6], targeted drug delivery [6] and magnetic hyperthermia based on the
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • ]. Generally, biocompatible magnetite (Fe3O4), iron oxide, iron sulfides and maghemite (Fe2O3) are synthesized using magnetotactic bacteria [156][157] that helps in targeted cancer treatment via magnetic hyperthermia, magnetic resonance imaging (MRI), DNA analysis and gene therapy [158]. Moreover, surface
PDF
Album
Review
Published 03 Apr 2018

Heavy-metal detectors based on modified ferrite nanoparticles

  • Urszula Klekotka,
  • Ewelina Wińska,
  • Elżbieta Zambrzycka-Szelewa,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2018, 9, 762–770, doi:10.3762/bjnano.9.69

Graphical Abstract
  • nanoparticles can be widely used in medicine for drug delivery, implants manufacture, as components of contrast agents in magnetic resonance imaging (MRI) as well as active centers in hyperthermia treatment [1]. The use of magnetic nanoparticles in drug delivery allows for a significant reduction of the amount
PDF
Album
Full Research Paper
Published 28 Feb 2018

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

  • Soraya Sangiao,
  • César Magén,
  • Darius Mofakhami,
  • Grégoire de Loubens and
  • José María De Teresa

Beilstein J. Nanotechnol. 2017, 8, 2106–2115, doi:10.3762/bjnano.8.210

Graphical Abstract
  • investigation of spin dynamics at the nanoscale [41]. This near field scanning probe technique allows magnetic resonance imaging (MRI) with nanometer spatial resolution and extreme spin sensitivity [42] and the investigation of spin waves at the sub-micrometer scale [43][44][45]. In these applications, very
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2017

Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene

  • Pavel L. Padnya,
  • Irina A. Khripunova,
  • Olga A. Mostovaya,
  • Timur A. Mukhametzyanov,
  • Vladimir G. Evtugyn,
  • Vyacheslav V. Vorobev,
  • Yuri N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2017, 8, 1825–1835, doi:10.3762/bjnano.8.184

Graphical Abstract
  • properties [3][4]. Water-soluble stable fluorescent nanoparticles open up new opportunities for the design of particles that can be traced throughout the body, for example, for the delivery of therapeutic agents [5], synthetic vectors for gene therapy [6] and contrast agents for magnetic resonance imaging [7
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2017

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

  • Dovile Baziulyte-Paulaviciene,
  • Vitalijus Karabanovas,
  • Marius Stasys,
  • Greta Jarockyte,
  • Vilius Poderys,
  • Simas Sakirzanovas and
  • Ricardas Rotomskis

Beilstein J. Nanotechnol. 2017, 8, 1815–1824, doi:10.3762/bjnano.8.183

Graphical Abstract
  • still no information has been presented about uptake of these nanoparticles into different types of cancer cells [22]. Although different gadolinium chelates are widely used in clinics as contrast agents for magnetic resonance imaging (MRI), the literature for the last two years shows increased
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2017

Calcium fluoride based multifunctional nanoparticles for multimodal imaging

  • Marion Straßer,
  • Joachim H. X. Schrauth,
  • Sofia Dembski,
  • Daniel Haddad,
  • Bernd Ahrens,
  • Stefan Schweizer,
  • Bastian Christ,
  • Alevtina Cubukova,
  • Marco Metzger,
  • Heike Walles,
  • Peter M. Jakob and
  • Gerhard Sextl

Beilstein J. Nanotechnol. 2017, 8, 1484–1493, doi:10.3762/bjnano.8.148

Graphical Abstract
  • different imaging techniques, such as photoluminescence (PL) microscopy and magnetic resonance imaging (MRI), open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization
  • nanoparticles; magnetic resonance imaging (MRI); multifunctional nanoparticles; multimodal imaging; photoluminescence; Introduction In recent years, medical imaging has become an important approach in the fields of diagnostics, therapy and regenerative medicine. Besides the classical technology of X-ray
  • examination, contrast-rich methods such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and ultrasonic techniques are being used increasingly for imaging soft tissue, e.g., cartilage imaging in progressive osteoarthritis. Advantages of different imaging
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2017

Biomechanics of selected arborescent and shrubby monocotyledons

  • Tom Masselter,
  • Tobias Haushahn,
  • Samuel Fink and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 1602–1619, doi:10.3762/bjnano.7.154

Graphical Abstract
  • consisting of stiff fibres embedded in a more flexible matrix. Finally, the technical implementation of the functional principles of such plants can be aided by finite element modelling [7]. Further studies using in vivo magnetic resonance imaging allow for revealing the internal stress–strain relationships
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2016
Other Beilstein-Institut Open Science Activities