Search results

Search for "material" in Full Text gives 1910 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Toward clinical translation of carbon nanomaterials in anticancer drug delivery: the need for standardisation

  • Michał Bartkowski,
  • Francesco Calzaferri and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2025, 16, 2092–2104, doi:10.3762/bjnano.16.144

Graphical Abstract
  • CNMs for drug delivery presents several practical and economic challenges. These include high equipment and raw material costs, limited yields, quality control issues, and environmental and safety concerns. Addressing these barriers requires targeted innovation in synthesis methods, improved
  • responses [37]. In contrast, a recent first-in-human investigation of thin, highly purified graphene oxide nanosheets reported that acute inhalation was well tolerated, showing no adverse effects on lung function, cardiovascular health, or systemic inflammatory markers [28]. Even within the same material
  • , and material purity are essential for translational development. Contaminants such as carboxylated carbonaceous fragments (CCFs) may be introduced during synthesis and processing, and these impurities can alter biological responses or induce toxicity. Their detection and removal should form a routine
PDF
Album
Supp Info
Perspective
Published 18 Nov 2025

Calibration of piezo actuators and systems by dynamic interferometry

  • Knarik Khachatryan and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 2086–2091, doi:10.3762/bjnano.16.143

Graphical Abstract
  • calibration factor differs from the nominal value by more than a factor of two might be due to the manufacturing tolerance; but, more likely, it can be explained by a depolarization of the tube piezo material as it has been subject to many heating cycles for bakeout of the UHV chamber. Next, we investigate
PDF
Album
Full Research Paper
Published 17 Nov 2025

Multifrequency AFM integrating PeakForce tapping and higher eigenmodes for heterogeneous surface characterization

  • Yanping Wei,
  • Jiafeng Shen,
  • Yirong Yao,
  • Xuke Li,
  • Ming Li and
  • Peiling Ke

Beilstein J. Nanotechnol. 2025, 16, 2077–2085, doi:10.3762/bjnano.16.142

Graphical Abstract
  • ) technique that synergistically integrates PeakForce tapping mode with higher eigenmode vibrations to achieve simultaneous high-resolution topographical imaging and to access additional contrast channels for distinguishing material regions or compositions. Unlike conventional multimodal AFM, our method
  • mappings obtained via the PeakForce tapping method. Furthermore, the technique’s dual capability, that is, quantitative mechanics via quasi-static force curves and qualitative material-sensitive information via eigenmode vibration signals, facilitates effective compositional differentiation in
  • heterogeneous nanomaterials while significantly simplifying the requirements for probe selection, which are typically necessary for material differentiation via the standard PeakForce tapping method. This innovation enhances the technique’s practicality and extends compatibility to a wider array of probe types
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2025

Molecular and mechanical insights into gecko seta adhesion: multiscale simulations combining molecular dynamics and the finite element method

  • Yash Jain,
  • Saeed Norouzi,
  • Tobias Materzok,
  • Stanislav N. Gorb and
  • Florian Müller-Plathe

Beilstein J. Nanotechnol. 2025, 16, 2055–2076, doi:10.3762/bjnano.16.141

Graphical Abstract
  • natural hierarchy of real gecko setae, which includes finer branches, varying cross sections, and region-specific material anisotropy. Real setae possess complex cross-sectional shapes and non-uniform branching angles, which could lead to variations in force distributions. Nonetheless, this idealized
  • material may exhibit anisotropy and viscoelastic or even plastic behavior, especially under rapid loading. Our FE mesh is presently limited to a linear-elastic, isotropic constitutive law, with parameters E and ν matching those of our molecular keratin spatula model [11][12]. These values were derived in a
  • bottom-up manner from atomistic simulations that reproduced experimental data [8][38][39]. For each of our simulations, we sampled E and ν from normal distributions with the same mean and standard deviations as our mesoscale spatula model. Table 2 summarizes the material parameters used for our FE mesh
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2025

Stereodiscrimination of guests in chiral organosilica aerogels studied by ESR spectroscopy

  • Sebastian Polarz,
  • Yasar Krysiak,
  • Martin Wessig and
  • Florian Kuhlmann

Beilstein J. Nanotechnol. 2025, 16, 2034–2054, doi:10.3762/bjnano.16.140

Graphical Abstract
  • available material confirmed the method’s reliability. The data underline how crucial the choice of the right solvent is if one wants to reach sufficient selectivity. Together with a series of custom-made organosilica aerogels, it is shown that adjusting solvent and surface properties so that the two
  • enantiomers (+) and (−) experience a different chemical environment is key. Otherwise, there might be a dynamic equilibrium between surface-adsorbed and mobile spin probes without stereodifferentiation. With this knowledge, it was possible to reach higher selectivity values than for the commercial material. A
  • Kotov and coworkers [4]. Chiral optical materials have unique optical activity, displaying phenomena such as circular dichroism and optical rotation. These characteristics are harnessed in applications like sensors, optical devices, and polarized materials. Material chirality can also lead to unusual
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2025

Beyond the shell: exploring polymer–lipid interfaces in core–shell nanofibers to carry hyaluronic acid and β-caryophyllene

  • Aline Tavares da Silva Barreto,
  • Francisco Alexandrino-Júnior,
  • Bráulio Soares Arcanjo,
  • Paulo Henrique de Souza Picciani and
  • Kattya Gyselle de Holanda e Silva

Beilstein J. Nanotechnol. 2025, 16, 2015–2033, doi:10.3762/bjnano.16.139

Graphical Abstract
  • encapsulated within a PLA shell, highlighting substantial potential for biomedical applications by overcoming key material integration hurdles. Keywords: co-axial nanofibers; electrospinning; hybrid nanosystem; nanofibers; nanoemulsion; poly(lactic acid); Introduction Driven by the significant potential of
  • process variables, such as high voltage, flow rate, and the distance from the Taylor cone to the collector, which significantly impacts nanofiber morphology [17]. Furthermore, selection of the material to be electrospun is crucial, requiring control over key attributes such as molecular weight, polymer
  • the shell and core flow rates is crucial to ensure proper incorporation of the core material. When this ratio is excessively high, the core flow becomes insufficient relative to the shell flow, resulting in fibers with a discontinuous or poorly defined core [50]. Conversely, when the core flow is too
PDF
Album
Full Research Paper
Published 12 Nov 2025

The cement of the tube-dwelling polychaete Sabellaria alveolata: a complex composite adhesive material

  • Emilie Duthoo,
  • Aurélie Lambert,
  • Pierre Becker,
  • Carla Pugliese,
  • Jean-Marc Baele,
  • Arnaud Delfairière,
  • Matthew J. Harrington and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2025, 16, 1998–2014, doi:10.3762/bjnano.16.138

Graphical Abstract
  • and that of the cement suggests that the inclusions of the heterogeneous granules would inflate through a still unexplained process to form hollow spheroids dispersed in the cement matrix, leading to the formation of a complex composite material. Keywords: adhesive protein; Annelida; biological
  • material; Polychaeta; protein phosphorylation; Introduction Many invertebrate marine organisms have adhesive mechanisms that allow them to firmly attach to various substrates in a wet and salty environment [1][2]. This remarkable ability has raised the interest of scientists in developing bio-inspired
  • adhesive systems are remarkably similar although some differences have been noted such as the absence of sulfated polysaccharides in S. alveolata [31]. Production of a solid composite material forming highly resistant cement spots The ultrastructural study (SEM and TEM) of the adhesive system of S
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2025

Laser ablation in liquids for shape-tailored synthesis of nanomaterials: status and challenges

  • Natalie Tarasenka

Beilstein J. Nanotechnol. 2025, 16, 1963–1997, doi:10.3762/bjnano.16.137

Graphical Abstract
  • target surface. The current understanding of the mechanisms of PLAL distinguishes the process depending on the laser pulse duration (Figure 1a). For the ultrashort pulses (femtosecond duration) the interaction of the ejected material with the laser pulse can be neglected. For longer laser pulses
  • (nanosecond), this interaction should be taken into account, resulting in the ionization and heating of the ejected material. The initial stages of interaction of a laser beam with a solid target are strongly dependent on laser pulse duration and fluence, surrounding liquid, target morphology and composition
  • generation of shockwaves and formation of cavitation bubbles, which typically have a lifetime of several microseconds. During its evolution, the cavitation bubble expands to reach the equilibrium with the confining liquid, after which the shrinking stage begins, which involves the ablated material moving
PDF
Album
Perspective
Published 10 Nov 2025

Mechanical property measurements enabled by short-term Fourier-transform of atomic force microscopy thermal deflection analysis

  • Thomas Mathias,
  • Roland Bennewitz and
  • Philip Egberts

Beilstein J. Nanotechnol. 2025, 16, 1952–1962, doi:10.3762/bjnano.16.136

Graphical Abstract
  • reference material, rather than calculated directly from the dynamics models of the cantilever. We measured the cantilever displacement with very high sampling frequencies over the course of the experiment and captured its oscillations that result from thermal energy. Using short-term Fourier
  • dynamic mechanics models relating the contact stiffness of the tip/cantilever pressing into a surface with the oscillation frequency of the cantilever and show that they did not accurately model the experiment. Several material combinations of tip and sample were examined; tip size and cantilever
  • used to determine the size of the tip–sample contact, assuming the relevant material parameters of the system examined. Finally, the same experiment and data analysis was performed with other substrates and AFM tip materials to further explore the analytical CR-AFM models. Methods Experimental design
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2025

Evaluating metal-organic precursors for focused ion beam-induced deposition through solid-layer decomposition analysis

  • Benedykt R. Jany,
  • Katarzyna Madajska,
  • Aleksandra Butrymowicz-Kubiak,
  • Franciszek Krok and
  • Iwona B. Szymańska

Beilstein J. Nanotechnol. 2025, 16, 1942–1951, doi:10.3762/bjnano.16.135

Graphical Abstract
  • significant beam-induced substrate defects (e.g., Ga atom implantation). Additionally, material growth is required to compete with the FIB milling process [4][9]. The use of ions instead of electrons, like in FEBID, offers several benefits, including enhanced film quality and adhesion, better control over the
  • growth process, and greater flexibility in material selection (the ability to deposit a variety of different materials). The usage of ions opens new possibilities for materials development and applications [20][21]. Until now, the development of FEBID has relied on precursors used for chemical vapor
  • backscattered electron (SEM BSE) analysis. For each studied precursor, an optimal ion fluence was determined, defined as the ion fluence at which the sputtering of the formed metal-rich structures becomes the dominant process, exceeding the rate of precursor decomposition and material buildup. While sputtering
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2025

Quantum circuits with SINIS structures

  • Mikhail Tarasov,
  • Mikhail Fominskii,
  • Aleksandra Gunbina,
  • Artem Krasilnikov,
  • Maria Mansfeld,
  • Dmitrii Kukushkin,
  • Andrei Maruhno,
  • Valeria Ievleva,
  • Mikhail Strelkov,
  • Daniil Zhogov,
  • Konstantin Arutyunov,
  • Vyacheslav Vdovin,
  • Vladislav Stolyarov and
  • Valerian Edelman

Beilstein J. Nanotechnol. 2025, 16, 1931–1941, doi:10.3762/bjnano.16.134

Graphical Abstract
  • power, Pbg is the background radiation power, ΣΛ(Te5 − Tph5) is the heat flux from electrons to phonons, Σ is the material constant, Λ is the absorber volume, Te and Tph are, respectively, the electron and phonon temperatures of the absorber, and Pcool is the electron cooling power. In other cases, it
PDF
Album
Full Research Paper
Published 04 Nov 2025

Targeting the vector of arboviruses Aedes aegypti with nanoemulsions based on essential oils: a review with focus on larvicidal and repellent properties

  • Laryssa Ferreira do Nascimento Silva,
  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Mariana Alice Gonzaga Gabú,
  • Maria Cecilia Queiroga dos Santos,
  • Daiane Rodrigues dos Santos,
  • Mylena Lemos dos Santos,
  • Gabriel Bezerra Faierstein,
  • Rosângela Maria Rodrigues Barbosa and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2025, 16, 1894–1913, doi:10.3762/bjnano.16.132

Graphical Abstract
  • distributed in Brazil, Ecuador, Peru, and other countries [124][125]. The plant material was collected in the state of Amapá (Brazil), and the morphotypes were differentiated by morphological characteristics and chemical composition determined by GC-MS. The morphotype A presented β-caryophyllene (45.93%) and
PDF
Album
Review
Published 28 Oct 2025

Self-assembly and adhesive properties of Pollicipes pollicipes barnacle cement protein cp19k: influence of pH and ionic strength

  • Shrutika Sawant,
  • Anne Marie Power and
  • J. Gerard Wall

Beilstein J. Nanotechnol. 2025, 16, 1863–1872, doi:10.3762/bjnano.16.129

Graphical Abstract
  • secretion into the higher pH/similar salt concentration seawater, rPpolcp19k-his samples that had undergone assembly into fibrils for 21 days at pH 4.0, 150 mM NaCl were transferred into a pH 8.0, 600 mM NaCl environment prior to investigation of adhesion. Similar aggregates of proteinaceous material were
  • accelerating voltage of 80 kV, and images were acquired at 3000× and 20000× magnifications. Each sample was initially scanned throughout at 3000× magnification to identify proteinaceous material; 10–15 TEM fields were then captured at 20000× magnification, and representative images containing protein, if
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2025

On the road to sustainability – application of metallic nanoparticles obtained by green synthesis in dentistry: a scoping review

  • Lorena Pinheiro Vasconcelos Silva,
  • Joice Catiane Soares Martins,
  • Israel Luís Carvalho Diniz,
  • Júlio Abreu Miranda,
  • Danilo Rodrigues de Souza,
  • Éverton do Nascimento Alencar,
  • Moan Jéfter Fernandes Costa and
  • Pedro Henrique Sette-de-Souza

Beilstein J. Nanotechnol. 2025, 16, 1851–1862, doi:10.3762/bjnano.16.128

Graphical Abstract
  • goals. These findings affirm that green nanotechnology represents a paradigm shift in dental material innovation, offering promising avenues to enhance oral health outcomes while integrating ecological responsibility. Future research must prioritize translational approaches, including comprehensive
PDF
Album
Review
Published 22 Oct 2025

Current status of using adsorbent nanomaterials for removing microplastics from water supply systems: a mini review

  • Nguyen Thi Nhan and
  • Tran Le Luu

Beilstein J. Nanotechnol. 2025, 16, 1837–1850, doi:10.3762/bjnano.16.127

Graphical Abstract
  • can recovery. Their effectiveness depends on material properties and environmental factors, but challenges remain in scale-up and related risks. Adsorbent nanomaterials show promising potential to enhance MP removal through specific properties. Although some related risks are discussed, these
  • distribution pipeline network. Depending on different characteristics, including the material of pipeline, distance of transportation, analytical methods, and the size of the MPs targeted, the concentration of MPs in water will fluctuate, as shown in Table 1. Research indicated that raw water sources (rivers
  • ]. Recently, Yan et al. developed a reduced graphene oxide (S-rGO) membrane with small lateral size and a rejection rate of up to 99.9% while maintaining high water permeability (236.2 L·m−2·h−1·bar−1) [56]. As another type of material belonging to carbon-based adsorbents, CNTs have also gained attention
PDF
Album
Review
Published 21 Oct 2025

Phytol-loaded soybean oil nanoemulsion as a promising alternative against Leishmania amazonensis

  • Victória Louise Pinto Freire,
  • Mariana Farias Alves-Silva,
  • Johny W. de Freitas Oliveira,
  • Matheus de Freitas Fernandes-Pedrosa,
  • Alianda Maira Cornélio,
  • Marcelo de Souza-Silva,
  • Thayse Silva Medeiros and
  • Arnóbio Antônio da Silva Junior

Beilstein J. Nanotechnol. 2025, 16, 1826–1836, doi:10.3762/bjnano.16.126

Graphical Abstract
  • and in vivo investigations to confirm its efficacy, tissue distribution, and mechanism of action. Experimental Material ʟ-α-Phosphatidylcholine (95%) (Avanti Polar lipids, United States); polaxamer 407 (Sigma-Aldrich, Brazil); glycerin (Vetec, Brazil); phytol (97%), mixture of isomers (Sigma-Aldrich
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2025

Further insights into the thermodynamics of linear carbon chains for temperatures ranging from 13 to 300 K

  • Alexandre Rocha Paschoal,
  • Thiago Alves de Moura,
  • Juan S. Rodríguez-Hernández,
  • Carlos William de Araujo Paschoal,
  • Yoong Ahm Kim,
  • Morinobu Endo and
  • Paulo T. Araujo

Beilstein J. Nanotechnol. 2025, 16, 1818–1825, doi:10.3762/bjnano.16.125

Graphical Abstract
  • data. The inset shows a representative case at T = 700 K for , as discussed in the text and in [30]. Supporting Information Supporting Information File 12: Additional figures and calculations. Funding This material is based upon work supported by the National Science Foundation under Grant No
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2025

Piezoelectricity of layered double hydroxides: perspectives regarding piezocatalysis and nanogenerators

  • Evgeniy S. Seliverstov,
  • Evgeniya A. Tarasenko and
  • Olga E. Lebedeva

Beilstein J. Nanotechnol. 2025, 16, 1812–1817, doi:10.3762/bjnano.16.124

Graphical Abstract
  • is still in its infancy and this review explores its recent advances. The discussion encompasses LDH-based piezoelectric nanogenerators, piezocatalytic and piezo-photocatalytic properties of LDHs, and composite material synergies that enhance the overall electroactive performance. Looking to the
  • organically modified Ni/Co-LDH nanosheets. However, some concerns arise regarding whether the synthesized material reported by the authors can indeed be classified as a Ni/Co-LDH. First, the synthesis was carried out using salts of divalent nickel and divalent cobalt at a Ni/Co ratio of 1:2. In the absence of
  • addition to zinc-aluminum LDHs, piezo-photocatalytic properties have also been studied for Ni/Fe LDH [15]. A Ni/Fe-LDH/Bi2MoO6−x composite has been designed for the piezo-photocatalytic N2 oxidation to NO3−. The obtained material displayed a high nitric acid production rate (7.23 mg·g−1·h−1). Experimental
PDF
Album
Review
Published 20 Oct 2025

Electrical, photocatalytic, and sensory properties of graphene oxide and polyimide implanted with low- and medium-energy silver ions

  • Josef Novák,
  • Eva Štěpanovská,
  • Petr Malinský,
  • Vlastimil Mazánek,
  • Jan Luxa,
  • Ulrich Kentsch and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2025, 16, 1794–1811, doi:10.3762/bjnano.16.123

Graphical Abstract
  • properties of the modified materials. In our previous studies, light ions such as Cu [1][2] and C [3] were implanted into GO, PI, and other polymers. In contrast, the implantation of heavier ions like Ag interacts with the target material through different mechanisms. Owing to its higher mass, Ag has a
  • , and pronounced plasmonic effects in the visible spectrum [5]. These synergistic characteristics make Ag ions especially advantageous for multifunctional material modification [6]. Silver is one of the metals with the highest electrical conductivity, and its ion implantation is an effective method for
  • can further enhance the electrical conductivity of the non-conductive material [11]. These islands can act as conductive bridges between graphitic regions, and, at sufficient density, form a percolating network that significantly reduces resistance. The resulting hybrid system consisting of a
PDF
Album
Full Research Paper
Published 13 Oct 2025

Exploring the potential of polymers: advancements in oral nanocarrier technology

  • Rousilândia de Araujo Silva,
  • Igor Eduardo Silva Arruda,
  • Luise Lopes Chaves,
  • Mônica Felts de La Roca Soares and
  • Jose Lamartine Soares Sobrinho

Beilstein J. Nanotechnol. 2025, 16, 1751–1793, doi:10.3762/bjnano.16.122

Graphical Abstract
  • , nanocapsules are particularly effective in encapsulating hydrophobic and lipophilic drugs due to the affinity of these compounds for the oily core. Drug release occurs through controlled diffusion across the polymeric layer and interaction with the core material. Conversely, nanospheres are capable of
  • performance of PNs by modulating their interactions with mucus and the intestinal epithelium. The selection of coating material and technique is guided by the therapeutic goal, the physicochemical properties of the core polymer, and the nature of the encapsulated drug. Section 4 of this review provides a
  • , forming polymeric complexes. Consequently, the incorporation of genetic material can occur via encapsulation, adsorption, or electrostatic interactions, resulting in nanocapsules, micelles, and diverse morphologies and shapes, as well as varying release profiles [139]. Considering that, to reach their
PDF
Album
Review
Published 10 Oct 2025

Advances of aptamers in esophageal cancer diagnosis, treatment and drug delivery

  • Yang Fei,
  • Hui Xu,
  • Chunwei Zhang,
  • Jingjing Wang and
  • Yong Jin

Beilstein J. Nanotechnol. 2025, 16, 1734–1750, doi:10.3762/bjnano.16.121

Graphical Abstract
  • a single biometric element to directly analyze biomarkers [45][46], while dual-system biosensors combine two antibodies and/or aptamers [47] into a better composite material to improve the specificity and sensitivity of the sensor. Figure 3 is a schematic diagram of a gold nanoparticle aptasensor
PDF
Album
Review
Published 06 Oct 2025

Beyond the bilayer: multilayered hygroscopic actuation in pine cone scales

  • Kim Ulrich,
  • Max David Mylo,
  • Tom Masselter,
  • Fabian Scheckenbach,
  • Sophia Fischerbauer,
  • Martin Nopens,
  • Silja Flenner,
  • Imke Greving,
  • Linnea Hesse and
  • Thomas Speck

Beilstein J. Nanotechnol. 2025, 16, 1695–1710, doi:10.3762/bjnano.16.119

Graphical Abstract
  • the bending of bilayer geometries due to an overestimated contribution of sclerenchyma fiber stiffness. Geometries with discrete fibers embedded in a brown tissue matrix more accurately reproduced the bending angles observed in experiments. This highlights the importance of the chosen material
  • due to the unknown sorption history of the sample [31]. We then divided the total amount of separated tissue material equally into five sample dishes each. The gravimetric water uptake of the extracted samples was then measured using a sorption test system (SPSx-1µ-High-Load, ProUmid, Germany) and a
  • X- and Y-directions (spanning the cross section of each model), the mean value of the two measured values was used, while the Z-value (from the basal to the apical end of the models) was derived directly. The same coefficients were used in all simulations. A linear elastic material model was applied
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2025

Ambient pressure XPS at MAX IV

  • Mattia Scardamaglia,
  • Ulrike Küst,
  • Alexander Klyushin,
  • Rosemary Jones,
  • Jan Knudsen,
  • Robert Temperton,
  • Andrey Shavorskiy and
  • Esko Kokkonen

Beilstein J. Nanotechnol. 2025, 16, 1677–1694, doi:10.3762/bjnano.16.118

Graphical Abstract
  • representative studies at MAX IV, including investigations of single-atom catalysts, confined catalysis, time-resolved catalysis, atomic layer deposition, and electrochemical interfaces, showcasing the role of APXPS in advancing material and surface science. Keywords: 2D materials; atomic layer deposition
  • material interfaces under more realistic conditions, which is a critical advancement in material research, gaining increasing popularity across various fields. APXPS is crucial for studying dynamic processes in catalysis, environmental science, and energy materials, where reactions typically occur at or
  • fields of, among others, catalysis research, material characterization, and thin film deposition, utilizing dedicated cells. HIPPIE, on the 3 GeV ring, covers a wider photon energy range than SPECIES (250 to 2500 eV), also with variable polarization [10]. It has two branches, each with its own
PDF
Album
Review
Published 24 Sep 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • spontaneously from the organization of active or natural compounds, without the presence of a carrier material or excipients. Their stability is due to the presence of intermolecular interactions, such as electrostatic forces, hydrogen bonding, π–π stacking, and hydrophobic interactions [104][105]. Among the
  • nanoparticles are semiconductor structures smaller than typical nanoparticles, ranging from 2 to 10 nm in size. They are composed of heavy metal or inorganic material and exhibit fluorescent activity, making them commonly used for pharmaceutical applications [153][154]. The technology’s composition is
PDF
Album
Review
Published 22 Sep 2025

Venom-loaded cationic-functionalized poly(lactic acid) nanoparticles for serum production against Tityus serrulatus scorpion

  • Philippe de Castro Mesquita,
  • Karla Samara Rocha Soares,
  • Manoela Torres-Rêgo,
  • Emanuell dos Santos-Silva,
  • Mariana Farias Alves-Silva,
  • Alianda Maira Cornélio,
  • Matheus de Freitas Fernandes-Pedrosa and
  • Arnóbio Antônio da Silva-Júnior

Beilstein J. Nanotechnol. 2025, 16, 1633–1643, doi:10.3762/bjnano.16.115

Graphical Abstract
  • hydroxide. Thus, all data demonstrate a good performance of the nanoprecipitation method to generate small-sized protein-loaded polymeric nanoparticles which can be used as a novel immunoadjuvant. Experimental Material Poly(D,L-lactic acid) (D,L-PLA) 50:50 (inherent viscosity 0.63 dL·g−1 at 30 °C) was
  • material was approved by the Brazilian Access Authorization and Dispatch Component of Genetic Patrimony (CGen) (Process 010844/2013-9, 25 October 2013). The venom was weighed and dissolved with PBS at 1 mg/mL, aliquoted, and stored at −20 °C until used. Preparation of cationic PLA nanoparticles for Tityus
PDF
Album
Full Research Paper
Published 17 Sep 2025
Other Beilstein-Institut Open Science Activities