Search results

Search for "membrane" in Full Text gives 506 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2025

Advanced atomic force microscopy techniques V

  • Philipp Rahe,
  • Ilko Bald,
  • Nadine Hauptmann,
  • Regina Hoffmann-Vogel,
  • Harry Mönig and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 54–56, doi:10.3762/bjnano.16.6

Graphical Abstract
  • calculations. Eftekari et al. measure the local surface photovoltage generated in a silicon photodiode integrated with a piezoelectric membrane [8]. The design of such a device allows for the laterally resolved simultaneous quantification of the photovoltage generated by the photodiode as well as the
  • mechanical oscillation of the piezoelectric membrane with highest resolution in real time. In addition to the measurement of surface potentials or photovoltages, Navarro-Rodriguez et al. investigate the dynamics of surface charges and how they couple to the detection system [9]. They describe in detail how
PDF
Editorial
Published 21 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • membrane. Results demonstrated that SO-Lipo exhibited superior endosomal escape compared to Unmodified-Lipo, as evidenced by reduced colocalization with lysosomal markers, and achieved comparable efficacy to AUR-Lipo with lower cytotoxicity. Lipid mixing assays confirmed the potential fusogenic effect of
  • SO with endosomal membrane models. MD simulations revealed that under acidic endosomal conditions, SO is protonated to oleic acid, which integrates into the membrane, enhancing fluidity and promoting fusion events essential for cytosolic release. SO-Lipo enhance endosomal escape through a fusogenic
  • developed. Cell-penetrating peptides (CPPs), renowned for their ability to traverse biological membranes, have been extensively studied for their potential to enhance endosomal escape by causing membrane disruption [5]. However, the broad utility of CPPs is limited by their non-specific nature, which often
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Attempts to preserve and visualize protein corona on the surface of biological nanoparticles in blood serum using photomodification

  • Julia E. Poletaeva,
  • Anastasiya V. Tupitsyna,
  • Alina E. Grigor’eva,
  • Ilya S. Dovydenko and
  • Elena I. Ryabchikova

Beilstein J. Nanotechnol. 2024, 15, 1654–1666, doi:10.3762/bjnano.15.130

Graphical Abstract
  • observed contamination originated from NBS; sucrose clusters were not detected. However, despite the heavy pollution, the content of bio-NPs was comparable to that of the FBS samples. The particles were scattered individually, and in some the membrane could be seen (Figure 6h–j). In these same polluted
  • ) Chylomicrons. LPs associated with bio-NPs are designated with (#). The arrows show sucrose clusters; the dotted arrows show the dust-like substance; the arrowheads show the membrane envelope of EVs; the white arrowheads show the protein corona (electron-dense layer) on the surface of chylomicrons. TEM
PDF
Album
Full Research Paper
Published 30 Dec 2024

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • -described for nanoparticles, and this process entails three steps: obtaining membrane-derived vesicles from a cellular source (1); generating the nanoparticles (2); and fusing the vesicles with the particles (3) [34][35][36][37]. Obtaining membrane vesicles requires the lysis of donor cells, necessitating
  • an adequate number of cells [37]. Cells may be sourced from specific tissues or clonally expanded in the laboratory. Once sufficient cells are available, membrane vesicle isolation begins. Target cells are subjected to freeze–thaw cycles or hypotonic environments to induce cell lysis and release
  • intracellular components [38][39]. The resulting product is then washed in a buffer solution containing protease inhibitors to eliminate cellular debris [40]. Subsequent sonication yields vesicles of 1 to 2 µm, and size homogenization can be achieved using a micro-extruder with a nanoscale membrane [41]. Once
PDF
Album
Perspective
Published 16 Dec 2024

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • activity, membrane leakage, and morphological changes. Toxic NPs can adversely affect cell viability, proliferation rate, and metabolic activity; also, they can reduce the therapeutic efficiency of the treatment [55]. The toxicity of NPs on biological entities fundamentally depends on the characteristics
  • the agents were administered after being passed through antibacterial membrane filters (pore diameter 0.45 μm). All interventions were performed in accordance with the principles of laboratory animal care of the Ethics Committee of Yerevan State Medical University (Yerevan, Armenia) and in accordance
PDF
Album
Full Research Paper
Published 11 Dec 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • can be released under specific biological conditions. Further, the polymer coating provides better colloidal stability, sustained drug release, and high loading capacity to the hybrid nanocarriers [54][55][56]. Cell membrane-camouflaged PLHNPs PLHNPs have been coated with cell membranes (e.g
  • ., erythrocytes) to develop membrane-camouflaged PLHNPs. These hybrid nanocarriers are also called biomimetic hybrid nanocarriers because their surface chemistry mimics natural cell membranes [57]. The PLHNPs are coated with cell membranes via the extrusion technique. The coating of PLHNPs with red blood cells
  • yields a natural vehicle for drug delivery, and these nanocarriers can easily escape the uptake by macrophages. In this system, the drugs are encapsulated in the lipophilic polymeric core, and the lipids in the outer natural membrane enhance the sustained release of drugs. With the development of these
PDF
Album
Review
Published 22 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • epithelium. It consists of three primary parts, namely, olfactory epithelium, lamina propria, and the basement membrane [49]. The olfactory epithelium is the specialized epithelial tissue mainly formed by basal, supporting, and olfactory sensory neurons [50]. The olfactory sensory neurons are bipolar neurons
  • oligomeric chitosan for the co-delivery of alpha-cyano-4-hydroxycinnamic acid and the monoclonal antibody cetuximab to the brain for glioblastoma therapy. The cetuximab conjugation on the NP surface improved the cytotoxicity profile, and a chicken chorioallantoic membrane assay showed enhanced antiangiogenic
  • cells are joined by tight junctions to form a barrier for metabolic functions. The barrier is surrounded by a basal membrane, pericytes, and astrocytes. Figure 1 was redrawn from [14] and created in BioRender. Akpinar, S. (2023) https://BioRender.com/c51s574. This content is not subject to CC BY 4.0
PDF
Album
Review
Published 12 Nov 2024

Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication

  • Muhammed Taha Durmus and
  • Ebru Bozkurt

Beilstein J. Nanotechnol. 2024, 15, 1369–1375, doi:10.3762/bjnano.15.110

Graphical Abstract
  • autoclave and hydrothermal synthesis was carried out at 125 °C for 12 h. After the reaction was completed, the aqueous suspension was brought to room temperature and filtered with ordinary filter paper. The filtrate was passed through a 0.22 µm membrane filter and centrifuged at 10000 rpm for 30 min. The
PDF
Album
Full Research Paper
Published 07 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • applications for the development of micro-aerial vehicles [118][119]. The wing-to-wing coupling mechanism in Hymenoptera functions as a multifaceted joint, linking the forewing’s rolled membrane to the hindwing’s hook structures, enabling synchronized movement and improved aerodynamic performance [121][122
  • ]. This mechanism is composed of a rolled membrane positioned at the trailing edge of the forewing, accompanied by small hooks (or hamuli) arranged in a line along the leading edge of the hind wing, all attached to a vein at the leading edge of the hind wing where the hooks are embedded [123]. These hooks
PDF
Album
Review
Published 05 Nov 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • stresses in thin films by deflecting a cantilever of defined size from a uniform membrane. We see a need for such experiments for future improvement of our proposed RoI spacing tuning method. The proposed approach allowed us to evaluate the leakage currents separately from the nanodevice properties. It was
PDF
Album
Full Research Paper
Published 23 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • receptor expression, the Western blot technique was used, which consists of transferring proteins from a polyacrylamide gel to an adsorbent membrane [37]. The identification of the target protein is performed through the specific recognition of a specific secondary antibody. To identify the folate receptor
  • proteins in the cell lysate, 20 μg of total protein per sample was mixed with Laemmli buffer with DTT (50 mM) and separated by an SDS-PAGE assay. Proteins were transferred to a nitrocellulose membrane (Bio-Rad transfer system) using transfer buffer (2.5 mM TrisHCl, 20 mM glycine, 0.01% SDS and 20% methanol
  • -functionalized SiO2NPs involves their capability to generate reactive species of oxygen, along with electrostatic interactions of deprotonated silanol groups with membrane proteins and tetra alkyl ammonium groups, which are also present in red blood cell membranes [47][48][49][50]. The addition of the ZW
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • . Physicochemical features such as size, shape, and surface charge play an extremely important role in the internalization of nanostructures. The uptake of nanoparticles into cells requires two steps. The first is the binding to the cell membrane, and the second is the uptake into the cell [34]. The zeta potential
PDF
Album
Full Research Paper
Published 26 Sep 2024

AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives

  • Jonathan-Siu-Loong Robles-Hernández,
  • Dora Iliana Medina,
  • Katerin Aguirre-Hurtado,
  • Marlene Bosquez,
  • Roberto Salcedo and
  • Alan Miralrio

Beilstein J. Nanotechnol. 2024, 15, 1170–1188, doi:10.3762/bjnano.15.95

Graphical Abstract
  • are HER2-positive, overexpressing Erb-B2 receptor tyrosine kinase 2 (ERBB2) in the cell membrane. HER2 tumors are usually more aggressive than other ones, but the advantage is that their treatment is very effective [15]. Another chemotherapy target is the chemokine C-X-C motif receptor 7 (CXCR7) [16
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • of the nano-qRASTR model. MONPs with higher metal electronegativity may interfere more strongly with cellular functions of zebrafish, but this does not invariably heighten toxicity; in some instances, it may mitigate oxidative stress and membrane disruption, thereby diminishing toxic effects
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
PDF
Album
Review
Published 22 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • types of molecules. It is now common to include vesicles originating from cells as being NPs. During the last decade there has been an amazing increase in studies of exosomes, small vesicles secreted by fusion of multivesicular bodies (late endosomes) with the plasma membrane of cells. Also, release of
  • other types of vesicles, for instance from the plasma membrane, may play a role in the transfer of information between cells. For a list of various types of extracellular vesicles (EVs), see [5]. For therapeutic purposes, EVs may not only be loaded with drugs after the release from cells, but incubation
  • phagocytes [7][8][9][10]). Endophilin is a player when it comes to both clathrin-mediated endocytosis (CME) and FEME, which is an endocytic mechanism induced by growth factors [7][8]. It should be noted that FEME is dependent on the formation of endophilin-positive assemblies on the plasma membrane, and this
PDF
Album
Perspective
Published 12 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • sensing membrane is accommodated between the contact of the metal gate and the insulator part. The carrier concentration in the body channel might change as a result of an accumulation, depletion, or inversion process when an external voltage is applied [51]. This results in the formation of a band
PDF
Album
Review
Published 06 Aug 2024

Beyond biomimicry – next generation applications of bioinspired adhesives from microfluidics to composites

  • Dan Sameoto

Beilstein J. Nanotechnol. 2024, 15, 965–976, doi:10.3762/bjnano.15.79

Graphical Abstract
  • to the ball bearings or internal fluid as the magnetic silicone had relatively weak attraction and was located at the furthest location from the magnetic trigger (NdFeB magnets). Without a strong bond between the silicone membrane and the internal magnetic materials, the actuator could not support
PDF
Album
Supp Info
Perspective
Published 05 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • , respectively (Table 1), which is acceptable for systemic administration. According to a review, these negative charges could reduce kidney excretion. The endothelial glycocalyx layer, glomerular basement membrane, and podocyte glycocalyx layer have negative charges, which filter positive nanoparticles faster
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • the body [11][12][13]. In addition to all these structural units of bone, the outer surface of bones is covered with a thin fibrous membrane called the periosteum. The periosteum is a well-vascularized tissue, containing many blood vessels that penetrate the bone to nourish the bone cells and
PDF
Album
Review
Published 25 Jul 2024

Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification

  • Indrasis Dasgupta,
  • Totan Das,
  • Biplab Das and
  • Shovanlal Gayen

Beilstein J. Nanotechnol. 2024, 15, 909–924, doi:10.3762/bjnano.15.75

Graphical Abstract
  • or passive transport across the cell membrane [12]. Excessive absorption by normal cells enables metal oxide nanoparticles to engage with various subcellular organelles, initiating diverse signaling pathways to generate a stress response within cells. This results in the production of free radicals
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2024

The effect of age on the attachment ability of stick insects (Phasmatodea)

  • Marie Grote,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 867–883, doi:10.3762/bjnano.15.72

Graphical Abstract
  • insects, which provide feedback about substrate contact [37], usually occur solely on attachment pads with nubby microstructures and only rarely on smooth eupantulae [34]. The setae of mechanoreceptors are usually mounted in a flexible membrane, which also contains resilin [87]. The combination of a
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • autoclave was allowed to cool and the solution was retrieved. After the synthesis, the solutions were filtered through a Büchner funnel equipped with a 200 nm nylon membrane (Whatman) [30] and centrifuged at 15000 rpm for 20 min. The process previously described was repeated modifying the chemical condition
PDF
Album
Full Research Paper
Published 25 Jun 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • mammalian whiskers [79]. These bristles are hypothesized to act as tactile sensors and may aid in prey handling, collision avoidance, foraging, or navigation, as well as provide eye protection [80][81]. Bats are the only mammals capable of powered flight. Their wing membrane is covered with short hairs
  • , which act as tactile airflow sensors [82][83]. The hairs grow sparsely on the membrane of the wing and in fringes on the wing’s leading edge. The neurons associated with these hairs can discriminate airflow directionality, and exhibit the highest firing rate when airflow is reversed, which is associated
  • generation. The flagella of archaea and bacteria are themselves passive hairs and are driven by protein motors at the base. Hair-like ultrastructures, or mastigonemes, on eukaryotic flagella/cilia comprise helical glycoproteins (≈10–20 nm thick) and lack a membrane [106]. They can be either stiff or flexible
PDF
Album
Review
Published 06 Jun 2024
Other Beilstein-Institut Open Science Activities