Search results

Search for "poly(lactic-co-glycolic acid)" in Full Text gives 42 result(s) in Beilstein Journal of Nanotechnology.

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • ][23] and CuO [24][25][26], are also well described in the literature. The antibacterial activity of polymeric nanoparticles, such as the polystyrene sulfate coated with a bilayer of dioctadecyldimethylammonium bromide [27] and poly(lactic-co-glycolic acid) loaded with gentamicin [28], were also
PDF
Album
Review
Published 31 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • polymeric nanoparticles prepared with PBCA and polymers from the poly(ethylene) family such as poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) [25][26]. Liposomes and other lipidic nanoparticles have also been reported as able to pass the BBB [27], as well as protein-based nanoparticles
PDF
Album
Review
Published 04 Jun 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration

  • Nashrawan Lababidi,
  • Valentin Sigal,
  • Aljoscha Koenneke,
  • Konrad Schwarzkopf,
  • Andreas Manz and
  • Marc Schneider

Beilstein J. Nanotechnol. 2019, 10, 2280–2293, doi:10.3762/bjnano.10.220

Graphical Abstract
  • mucus. Drug carrier systems such as nanoparticles (NPs) require proper surface chemistry and small size to ensure their permeability through the hydrogel-like systems. We have employed a microfluidic system to fabricate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with a muco-penetrating
  • , Germany) and poly(lactic-co-glycolic acid) (PLGA) (Resomer RG 503 H, 50:50 ratio, average Mw = 24,000–38,000 Da) was obtained from Evonik Industries (Darmstadt, Germany). Amphiphilic block copolymer Poloxamer (Pluronic F68, F127, 9400, 6200, 3100, 10500 and 6400) was a kind gift from BASF SE (Ludwigshafen
PDF
Album
Full Research Paper
Published 19 Nov 2019

Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

  • Sebastian Pieper,
  • Hannah Onafuye,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Martin Michaelis and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 2062–2072, doi:10.3762/bjnano.10.201

Graphical Abstract
  • . To investigate whether easy-to-prepare nanoparticles made of well-tolerated polymers may circumvent transporter-mediated drug efflux, we prepared poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and PEGylated PLGA (PLGA-PEG) nanoparticles loaded with the ABCB1 substrate doxorubicin by
  • ; nanoparticles; poly(lactic-co-glycolic acid) (PLGA); Introduction According to Globocan, there “were 14.1 million new cancer cases, 8.2 million cancer deaths and 32.6 million people living with cancer (within five years of diagnosis) in 2012 worldwide” [1]. Despite substantial improvements over recent decades
  • carriers for anticancer drugs. Here, we prepared and directly compared the effects of doxorubicin-loaded polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) nanoparticles in neuroblastoma cells. PLA and PLGA are well-known ingredients of FDA- and EMA-approved drugs for human use [10][11] and are
PDF
Album
Full Research Paper
Published 29 Oct 2019

Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells

  • Hannah Onafuye,
  • Sebastian Pieper,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Klaus Langer and
  • Martin Michaelis

Beilstein J. Nanotechnol. 2019, 10, 1707–1715, doi:10.3762/bjnano.10.166

Graphical Abstract
  • bind to doxorubicin via its amino group. Notably, the results differ from a recent similar study in which nanoparticles prepared from poly(lactic-co-glycolic acid) (PLGA) or polylactic acid (PLA), two other biodegradable materials approved by the FDA and EMA for human use [27][28], did not bypass ABCB1
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2019

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • to U251 glioma cells and induce cancer cell apoptosis [9]. Moreover, MSCs carrying poly(lactic-co-glycolic acid) (PLGA) NPs linked with paclitaxel selectively accumulate in an orthotopic A549 lung tumour model [2]. It has been reported that IFN-beta secreting MSCs could integrate into A375SM melanoma
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

Development of an advanced diagnostic concept for intestinal inflammation: molecular visualisation of nitric oxide in macrophages by functional poly(lactic-co-glycolic acid) microspheres

  • Kathleen Lange,
  • Christian Lautenschläger,
  • Maria Wallert,
  • Stefan Lorkowski,
  • Andreas Stallmach and
  • Alexander Schiller

Beilstein J. Nanotechnol. 2017, 8, 1637–1641, doi:10.3762/bjnano.8.163

Graphical Abstract
  • Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Humboldtstr. 8, 07743 Jena, Germany 10.3762/bjnano.8.163 Abstract We here describe a new approach to visualise nitric oxide (NO) in living macrophages by fluorescent NO-sensitive microspheres based on poly(lactic-co-glycolic acid
  • irregular mucosal patterns and vascular lesions [3]. We developed a novel polymeric microparticle made of biodegradable poly(lactic-co-glycolic acid) (PLGA), which accumulates selectively in inflamed mucosa of patients with inflammatory bowel disease without interfering with the healthy mucosa. This
PDF
Album
Supp Info
Letter
Published 08 Aug 2017

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

  • Christine Cheng and
  • Malancha Gupta

Beilstein J. Nanotechnol. 2017, 8, 1629–1636, doi:10.3762/bjnano.8.162

Graphical Abstract
  • . Hong et al. demonstrated that simply dipping polycaprolactone/poly(lactic-co-glycolic acid) 3D scaffolds in mussel adhesive proteins promoted cellular adhesion, proliferation and differentiation, showing that a facile surface modification improved the viability of using 3D-printed scaffolds for tissue
PDF
Album
Full Research Paper
Published 08 Aug 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • cells, rather than Caco-2 barriers, interestingly, there are suggestions that the response is different in overnight cultures and cells grown for 10 days [25]. Uptake into Caco-2 cells has been reported for silica [23][24][26][28], polystyrene [29], chitosan [30], poly(lactic-co-glycolic acid) [31][32
  • ][33] and poly(lactic-co-glycolic acid) and poly(lactic acid) with attached poly(ethylene glycol) [31][32] nanoparticles and to be temperature-dependent [29][30][31][32][33]. Despite uptake, transport across differentiated Caco-2 barriers (grown for 21 days) has been shown to be very limited for
  • nanoparticles such as microporous silicon [22], silica [23], poly(lactic-co-glycolic acid) [33] and carboxylated and aminated polystyrene [34]. We hypothesize that the low translocation observed in Caco-2 barriers results from a low uptake into the cells, an uptake that depends on cellular differentiation and
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Association of aescin with β- and γ-cyclodextrins studied by DFT calculations and spectroscopic methods

  • Ana I. Ramos,
  • Pedro D. Vaz,
  • Susana S. Braga and
  • Artur M. S. Silva

Beilstein J. Nanotechnol. 2017, 8, 348–357, doi:10.3762/bjnano.8.37

Graphical Abstract
  • resource to controlled release strategies, which can be achieved by encapsulating aescin into liposomes [2][3], phytosomes (phospholipidic self-emulsifying particles) [10], zeolites [11], poly(lactic co-glycolic acid) nanoparticles [12] or cyclodextrins. Cyclodextrins are cyclic oligosaccharides, typically
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2017

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • the vascular system and bladder, showed an increased proliferation rates on a poly(glycolic acid) (PGA) mesh, as well as on poly(ether urethane) (PU) and poly(lactic-co-glycolic acid) (PLGA) substrates with nanoroughness [41][42][44]. ECs: Similar to SMCs, the regulation of ECs proliferation depends
PDF
Album
Review
Published 08 Nov 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • well as other biocompatible polymers such as poly(methyl methacrylate) (PMMA) [39][40][41], poly(lactic-co-glycolic acid) (PLGA) [42] and poly-ε-caprolactone (PCL) [43][44], is extremely interesting for the fabrication of innovative multilayer structures to be used in drug delivery applications. In
PDF
Album
Full Research Paper
Published 21 Jan 2016

pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

  • Manuel Häuser,
  • Klaus Langer and
  • Monika Schönhoff

Beilstein J. Nanotechnol. 2015, 6, 2504–2512, doi:10.3762/bjnano.6.260

Graphical Abstract
  • Nanoparticles (NP) of poly(lactic-co-glycolic acid) (PLGA) represent a promising biodegradable drug delivery system. We suggest here a two-step release system of PLGA nanoparticles with a pH-tunable polymeric shell, providing an initial pH-triggered step, releasing a membrane-toxic cationic compound. PLGA
  • fulfilling this criterion is poly(lactic-co-glycolic acid) (PLGA), a copolymer consisting of lactic acid and glycolic acid, which has been approved by the authorities to be suitable for pharmaceutical application [5]. Nanoparticles of an appropriate size can be reliably assembled via an emulsion diffusion
  • Materials: Poly(lactic-co-glycolic acid) (PLGA, Resomer® RG 502H) was purchased from Evonik Industries AG (Darmstadt, Germany). Resorcinol (analytical grade), ethyl acetate (reagent grade; >99.5%), deuterium oxide (D2O) (99.9% isotope purity), poly(vinyl alcohol) (PVA) (87–89% hydrolysed; Mw ≈ 67,000 g/mol
PDF
Album
Full Research Paper
Published 30 Dec 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • cell morphological features. Keywords: 1α,25-dihydroxyvitamin D3; calcitriol; cancer therapy; drug delivery; poly(lactic-co-glycolic acid); Introduction Vitamin D3, a secosteroid hormone produced through sunlight exposure [1], can be found with different chemical structures: calciol or
  • biocompatibility, biodegradability, mechanical strength, FDA approval and low synthesis complexity. One of the most attractive candidates is poly(lactic-co-glycolic acid) (PLGA), which is a copolymer of poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) [18][19]. We expect that vitamin D3 encapsulation in these
  • Maria J. Ramalho Joana A. Loureiro Barbara Gomes Manuela F. Frasco Manuel A. N. Coelho M. Carmo Pereira LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal 10.3762/bjnano.6.135 Abstract Poly(lactic-co-glycolic
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

  • Alina Maria Holban,
  • Valentina Grumezescu,
  • Alexandru Mihai Grumezescu,
  • Bogdan Ştefan Vasile,
  • Roxana Truşcă,
  • Rodica Cristescu,
  • Gabriel Socol and
  • Florin Iordache

Beilstein J. Nanotechnol. 2014, 5, 872–880, doi:10.3762/bjnano.5.99

Graphical Abstract
  • materials [37], metaloporphyrines [38] and for biomolecules, e.g., poly(lactic acid) (PLA) [39], poly(lactic-co-glycolic acid) PLGA [40], polyvinyl alcohol (PVA) [41] and fibrinogen [42]. Our recent reports have highlighted the capability of the laser processing technique to prepare thin coatings based on
PDF
Album
Full Research Paper
Published 18 Jun 2014
Other Beilstein-Institut Open Science Activities