Search results

Search for "reactive ion etching" in Full Text gives 62 result(s) in Beilstein Journal of Nanotechnology.

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • . The thickness of the nanowire and electrodes is 50 nm, including a 5 nm Ti adhesion layer. The third step is the dry etching of the TiO2 layer. For that, we first create an etching mask by electron-beam lithography, thermal deposition of a 30 nm thick nickel layer and lift-off. Reactive ion etching is
PDF
Album
Full Research Paper
Published 11 Jul 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • . Successively, reactive ion etching was used to selectively remove the portion of the gold film not protected by the nanospheres. The etch rate (2.9 nm/min) was estimated measuring the thickness of the gold film for different etching times. Finally, the nanosphere residues were removed by oxygen plasma
PDF
Album
Full Research Paper
Published 29 May 2018

Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization

  • Axel Seidenstücker,
  • Stefan Beirle,
  • Fabian Enderle,
  • Paul Ziemann,
  • Othmar Marti and
  • Alfred Plettl

Beilstein J. Nanotechnol. 2018, 9, 1390–1398, doi:10.3762/bjnano.9.131

Graphical Abstract
  • -defined Au nanoparticles (NPs) exhibiting a high degree of hexagonal order as obtained in a first step by a proven micellar approach. These NP arrays serve as masks in a second reactive ion etching (RIE) step optimized for etching Si and some important Si compounds (silicon oxide, silicon nitride) on the
  • notably, narrow size distributions of the parameters, a more stable and more perfectly shaped etching mask is needed. Therefore, a mask formed by well-ordered metallic nanoparticles (NPs) was preferred. The chosen etching process is a low-power single-step reactive ion etching (RIE) process with CF4/CHF3
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

  • Markus Moosmann,
  • Thomas Schimmel,
  • Wilhelm Barthlott and
  • Matthias Mail

Beilstein J. Nanotechnol. 2017, 8, 1671–1679, doi:10.3762/bjnano.8.167

Graphical Abstract
  • surface. The samples were produced in a two-step molding process [20] (see Experimental section) and were based on silicon surfaces with micro-pillars structured by reactive ion etching (RIE). Tegotop® was applied as a superhydrophobic coating. Figure 3a shows an SEM image (top view) of the final epoxy
  • -pillar samples The master for the epoxy resin samples used in this study was a silicon wafer covered with micrometer-scale structures created by reactive ion etching (RIE), which were ordered from the Center of Advanced European Studies and Research (Caesar) in Bonn, Germany. The structures were
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2017

Silicon microgrooves for contact guidance of human aortic endothelial cells

  • Sara Fernández-Castillejo,
  • Pilar Formentín,
  • Úrsula Catalán,
  • Josep Pallarès,
  • Lluís F. Marsal and
  • Rosa Solà

Beilstein J. Nanotechnol. 2017, 8, 675–681, doi:10.3762/bjnano.8.72

Graphical Abstract
  • -defined topographical and chemical cues to assess cell micropatterning [12][13][14][15][16]. Some of these approaches are based on photolithography and reactive ion etching that in some cases are followed by anisotropic etching [17]. A simple and effective geometry previously described, involves line
PDF
Album
Full Research Paper
Published 22 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • -free graphene by reactive ion etching. At the same time, the response to NO2 gas increased only by 33% [31]. We would like to point out that the graphene sensors functionalised by PLD with Ag and ZrO2 in our previous work [14] showed a much larger response to 1 ppm NO2 than to 20 ppm NH3 (see Table 1
PDF
Album
Full Research Paper
Published 07 Mar 2017

Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

  • Massimiliano Lucci,
  • Ivano Ottaviani,
  • Matteo Cirillo,
  • Fabio De Matteis,
  • Roberto Francini,
  • Vittorio Merlo and
  • Ivan Davoli

Beilstein J. Nanotechnol. 2017, 8, 539–546, doi:10.3762/bjnano.8.58

Graphical Abstract
  • lithography aggressive and high-energy etching processes such as ion milling and reactive ion etching (RIE) can be avoided. The use of anodization can reduce the number of mask and photolithography steps. In particular, it is not necessary to deposit further insulators to separate different metals in
PDF
Album
Full Research Paper
Published 02 Mar 2017

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • using direct laser writing and reactive ion etching techniques (Method 2 described in the Experimental section). The window with a diameter of 3 mm and height of 0.05 mm was fabricated in the SU-8 photoresist. In order to observe fabrication and operation of the copper transistor in situ, a ceramic
  • photoresist film using direct laser writing (DWL 66, Heidelberg Instruments, Germany), and then developed. Reactive ion etching (RIE, Plasmalab100, Oxford Instruments, UK) was used to etch the Cr/Au film in the developed areas (120 W, 30 sccm Ar, 10 mTorr, 30 min) in order to isolate the microelectrodes from
PDF
Album
Full Research Paper
Published 01 Mar 2017

Study of the surface properties of ZnO nanocolumns used for thin-film solar cells

  • Neda Neykova,
  • Jiri Stuchlik,
  • Karel Hruska,
  • Ales Poruba,
  • Zdenek Remes and
  • Ognen Pop-Georgievski

Beilstein J. Nanotechnol. 2017, 8, 446–451, doi:10.3762/bjnano.8.48

Graphical Abstract
  • advantageously used for all other thin-film solar cells. So far, a wide diversity of methods have been used for the preparation of ZnO nanocolumns such as metal organic chemical vapor deposition (MOCVD) [11], electrochemical deposition [12], sputtering [13], reactive ion etching [5] and the hydrothermal method
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2017

Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

  • Felix Pyatkov,
  • Svetlana Khasminskaya,
  • Vadim Kovalyuk,
  • Frank Hennrich,
  • Manfred M. Kappes,
  • Gregory N. Goltsman,
  • Wolfram H. P. Pernice and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2017, 8, 38–44, doi:10.3762/bjnano.8.5

Graphical Abstract
  • electron beam lithography on top of Si3N4/SiO2/Si substrate. Au/Cr contacts were produced by physical vapor deposition, and 600 nm wide, half-etched Si3N4-waveguides were formed with reactive ion etching. A typical sample contains tens of contact pairs and CNTs that were placed in between using
PDF
Album
Full Research Paper
Published 05 Jan 2017

Precise in situ etch depth control of multilayered III−V semiconductor samples with reflectance anisotropy spectroscopy (RAS) equipment

  • Ann-Kathrin Kleinschmidt,
  • Lars Barzen,
  • Johannes Strassner,
  • Christoph Doering,
  • Henning Fouckhardt,
  • Wolfgang Bock,
  • Michael Wahl and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2016, 7, 1783–1793, doi:10.3762/bjnano.7.171

Graphical Abstract
  • Institut für Oberflächen- und Schichtanalytik (IFOS) GmbH, Trippstadter Str. 120, D-67663 Kaiserslautern, Germany 10.3762/bjnano.7.171 Abstract Reflectance anisotropy spectroscopy (RAS) equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE)) of monocrystalline
  • growth and reactive ion etching (RIE) two similar EpiRAS instruments by Laytec, Berlin, Germany, are employed. In MBE growth RAS is well established meanwhile [6][7] and optical access is provided easily. The use of a RAS system in combination with RIE – especially a parallel plate reactor as in our case
  • techniques (as, e.g., reflection high-energy electron diffraction (RHEED)), which might not be applicable in some set-ups. Recording a RAS color plot is time-consuming, i.e., monitoring a single RAS spectrum from 1.5–5.0 eV photon energy with a step size of 0.1 eV during reactive ion etching (the substrate
PDF
Album
Full Research Paper
Published 21 Nov 2016

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • array the diameter of the spheres need to be etched by reactive ion etching using oxygen plasma (Plasmalab 80 Plus, Oxford Instruments, Abingdon, United Kingdom) prior to metallization. Different diameters of the polystyrene spheres were achieved by varying the etching time from 8 to 28 min at 18 W. On
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Effect of tetramethylammonium hydroxide/isopropyl alcohol wet etching on geometry and surface roughness of silicon nanowires fabricated by AFM lithography

  • Siti Noorhaniah Yusoh and
  • Khatijah Aisha Yaacob

Beilstein J. Nanotechnol. 2016, 7, 1461–1470, doi:10.3762/bjnano.7.138

Graphical Abstract
  • technique is itself divided into three types: reactive ion etching (RIE) [1][2], sputter etching [3], and vapour phase etching [4]. On the other hand, wet etching is the simplest etching technology and works very well for etching thin films on substrates. Additionally, it can also be used to etch the
PDF
Album
Full Research Paper
Published 17 Oct 2016

Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores

  • Adrien Chauvin,
  • Cyril Delacôte,
  • Mohammed Boujtita,
  • Benoit Angleraud,
  • Junjun Ding,
  • Chang-Hwan Choi,
  • Pierre-Yves Tessier and
  • Abdel-Aziz El Mel

Beilstein J. Nanotechnol. 2016, 7, 1361–1367, doi:10.3762/bjnano.7.127

Graphical Abstract
  • two-step approach consisting of laser interference lithography using a NR7-250P photoresist followed by deep reactive ion etching. Such substrates consist of nanograted silicon structures (120 nm in width and 1000 nm in height) of 220 nm in pitch with an aspect ratio of about 6. Growth of nanowires
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • -up techniques based on the self-assembly of nanoscale spheres [2][11][12] allow precise control over diameter and distance of the antidots. In the present work, we make use of bottom-up nanosphere lithography in combination with reactive ion etching resulting in hexagonally arranged, non-close packed
PDF
Album
Full Research Paper
Published 24 May 2016

Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations

  • Aldo S. Gago,
  • Juan-Pablo Esquivel,
  • Neus Sabaté,
  • Joaquín Santander and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2015, 6, 2000–2006, doi:10.3762/bjnano.6.203

Graphical Abstract
  • methanol concentration has a strong influence on the polarization curve of the anode, but it is mainly due to the small open ratio (23%) of the metallized silicon anode current collector produced by deep reactive ion etching (DRIE). It is designed in such a way that it reduces methanol crossover at low
  • fabrication of the passive micro-direct methanol fuel cell (µDMFC) are given in [11][14]. In short, the micro-fuel cell possessed two Si-gold plated current collectors made by deep reactive ion etching process (DRIE), with optimized open area geometries. Metallized silicon current collectors with 23 and 40
PDF
Album
Full Research Paper
Published 07 Oct 2015

Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

  • Cheng Huang,
  • Alexander Förste,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1205–1211, doi:10.3762/bjnano.6.123

Graphical Abstract
  • or time consuming, e.g., as vapor annealing for block-copolymers takes days to complete and UV radiation or reactive ion etching (RIE) is required for the lift-off process [19][20]. Here, we introduce a very rapid and cost-effective way to fabricate metal island arrays or perforated metal films via
  • hierarchical micro–nano structures for applications such as cell-adhesion studies [36][37]. Metals like Cr, Au or Cu are good etching resists. Therefore the metal masks could be used to amplify the topographic contrast by anisotropic etching into the substrate with techniques such as reactive ion etching [38
  • be used for various applications, e.g., in cell adhesion studies, for the immobilization of biomaterials, for plasmonics such as optical filters or as resist layers for anisotropic reactive ion etching. The wavelength-selective optical transmission of our perforated films due to the localized surface
PDF
Album
Full Research Paper
Published 26 May 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • prepared by a sequence of MEMS techniques including photolithography, reactive ion etching (RIE), ion beam etching (IBE) and wet etching. The cantilevers used in this study were 300 to 350 μm long and 40 μm wide. To ease the fabrication process thicknesses ranging from 10 μm to 20 μm were chosen. The
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • standard poly(methyl methacrylate) (PMMA) resist. An etching with well calibrated buffered HF (BHF) allows for the transferring of the pattern from the PMMA to the SiO2 layer (reactive ion etching can be used as alternative). Once the SiO2 mask is defined, the top silicon layer is etched anisotropically
  • . Plasma etching/ reactive ion etching (RIE), which is a standard process in integrated circuit fabrication, can be used. However, a simple and more convenient technique is the wet silicon anisotropic etching in alkaline solutions [98][99], typically based on potassium hydroxide (KOH) or
  • etches, which is limited not only by the etching selectivity but also by the reduced mechanical stability of very long and narrow nanowires. Deep reactive ion etching (DRIE) is a plasma etching technique that alternates vertical etching steps (for example by SF6) and polymerization steps (by CF4) [105
PDF
Album
Review
Published 14 Aug 2014

Topology assisted self-organization of colloidal nanoparticles: application to 2D large-scale nanomastering

  • Hind Kadiri,
  • Serguei Kostcheev,
  • Daniel Turover,
  • Rafael Salas-Montiel,
  • Komla Nomenyo,
  • Anisha Gokarna and
  • Gilles Lerondel

Beilstein J. Nanotechnol. 2014, 5, 1203–1209, doi:10.3762/bjnano.5.132

Graphical Abstract
  • . Fabrication of silicon nanostructures produced by direct etching Reactive ion etching (RIE) was implemented for the dry etching of the silicon surfaces by using the beads as a mask. The gases used for RIE were SF6 and O2. The regions covered by the beads are not etched by RIE. In this manner, we obtained a
PDF
Album
Full Research Paper
Published 04 Aug 2014

Nanocavity crossbar arrays for parallel electrochemical sensing on a chip

  • Enno Kätelhön,
  • Dirk Mayer,
  • Marko Banzet,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2014, 5, 1137–1143, doi:10.3762/bjnano.5.124

Graphical Abstract
  • can only be accessed from within cavity, while a connection to the bulk reservoir is only enabled through the access channels. The sensor is fabricated on a thermally oxidized silicon substrate while all structures are formed via lift-off processes or reactive ion etching. Electrodes are fabricated by
  • , access holes are etched through the passivation directly down onto the chromium sacrificial layer by reactive ion etching. The chromium is then fully removed in an isotropic wet etch using chrome etch solution. Electrochemical methods Electrochemical characterization is either performed via cyclic
PDF
Album
Full Research Paper
Published 23 Jul 2014

Effect of contaminations and surface preparation on the work function of single layer MoS2

  • Oliver Ochedowski,
  • Kolyo Marinov,
  • Nils Scheuschner,
  • Artur Poloczek,
  • Benedict Kleine Bussmann,
  • Janina Maultzsch and
  • Marika Schleberger

Beilstein J. Nanotechnol. 2014, 5, 291–297, doi:10.3762/bjnano.5.32

Graphical Abstract
  • measurements we use a gold contact patterned on SLM in order to calibrate the work function of our AFM tip which allows us to determine quantitative work function values for SLM, BLM and few layer MoS2 (FLM). Additionaly, we use reactive ion etching to pattern holes into the SiO2 substrate. By comparing the
  • (graphene supermarket, Calverton, NY, USA). The SiO2 was patterned by using an inductive coupled plasma reactive ion etching (ICP-RIE) with Cl2/N2 chemistry. The etching mask used was a standard photoresist patterned by optical lithography. The etching was performed at 35 °C using 300 W of ICP and 150 W
  • table power. The chamber pressure was adjusted to 8·10−3 mbar during this procedure. Reactive ion etching was employed to locally alter the surface roughness and introduce defects in the SiO2 substrate [30][31]. The resulting structures on the SiO2 surface consist of etched holes with a depth of about
PDF
Album
Full Research Paper
Published 13 Mar 2014

Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale

  • Burcin Özdemir,
  • Axel Seidenstücker,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2013, 4, 886–894, doi:10.3762/bjnano.4.100

Graphical Abstract
  • heights of 270 nm and aspect ratios of 5:1. Alternatively, the NP position can be fixed by a short etching step with negligible mask erosion followed by cycles of growing and reactive ion etching (RIE). In that case, each cycle is started by photochemically re-growing the Au NP mask and thereby completely
  • silicon nitride. Keywords: Au nanoparticles; block copolymer micellar lithography; photochemical growth; reactive ion etching; self-assembly; Introduction Nanoparticles (NP), though primarily sought-after because of their new size- and shape-dependent physical or chemical properties, also play an
  • important role in the context of nanolithography. For this purpose, NP that are deposited onto a given substrate are applied as masks during the subsequent anisotropic etching processes such as reactive ion etching (RIE). In this way, the original pattern of NP positions is transferred into the subjacent
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2013

3D nano-structures for laser nano-manipulation

  • Gediminas Seniutinas,
  • Lorenzo Rosa,
  • Gediminas Gervinskas,
  • Etienne Brasselet and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2013, 4, 534–541, doi:10.3762/bjnano.4.62

Graphical Abstract
  • to be a trapping force of 2 pN/W/μm2 (numerical result) exerted on a 50-nm diameter bead in water. The simulations were based on the analytical Lorentz force model. Keywords: extraordinary transmission; near field; optical tweezing; plasmonics; reactive ion etching; self-induced back-action
PDF
Album
Full Research Paper
Published 17 Sep 2013
Other Beilstein-Institut Open Science Activities