Search results

Search for "solar cell" in Full Text gives 96 result(s) in Beilstein Journal of Nanotechnology.

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • measurements provide information about the different factors limiting solar cell efficiency: charge storage, carrier lifetimes, recombination and resistivity [60]. Figure 8 shows the IS measurements (Nyquist plot) and the corresponding simulations (with the equivalent circuit model presented in Figure 8c) of
  • enhance the performance of the solar cell. In addition, the influence of the concentration of the FeS2 NCs (0, 0.25, 0.5 and 1.0 wt %) on the solar cell performance was investigated. The PV parameters were enhanced at a specific doping level (0.5 wt %). The PCE could be improved by about 21% compared to
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu–Sn–S (CTS) materials fulfils
  • ; Introduction In the last decade, advances in materials science and nanoscience have led to the development of new solar cell technologies. Today, they hold promise to overcome the environmental issues created by silicon-based devices. Such devices are difficult to decommission, their production requires energy
  • environmentally serious [1][2][3][4][5][6][7][8]. Thin films of kesterite and kuramite (tetragonal Cu2ZnSnS4 and Cu3SnS4, respectively) are among the most sustainable third generation solar cell technology materials [9][10][11]. Their best conversion efficiencies span from 12.6% (using Cu2ZnSnS4−xSex obtained
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • metal oxides exhibit a large exciton binding energy, large piezoelectric constants and strong photoluminescence. This is of interest not only for applications as photocatalysts but also as sensors, solar cell devices, disinfectants, and cosmetics [137][138]. As discussed above, the dispersion of the
  • alternative interesting semiconductor–semiconductor heterojunctions. Finally, another approach to increase the photo-efficiency of the considered systems is the photosensitization of TiO2 and ZnO NPs to obtain visible-light responsive photocatalysts as well as solar-cell components [93][141][142]. These
PDF
Album
Review
Published 31 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • this family of materials [5], new solar-cell architectures based on nanostructures have been proposed [6][7][8][9]. Examples of such architectures are intermediate-band solar cells [10], solar cells based on multi-exciton generation [11][12], quantum dot solar cells [13][14][15], and others [16], all
  • analysis. The use of a substrate with an amorphous surface, together with the use of an industrial standard growth technique, namely co-evaporation, opens the door to use the nanodots in advanced solar-cell architectures and a potential large-area industrialization of this process. Experimental Sample
PDF
Album
Full Research Paper
Published 22 May 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • - and microstructures for energy conversion: materials and devices” provides insights into the latest developments in the related fields. Besides a focus on solar-cell concepts [1][2][3][4][5], it also addresses light harvesting by solar fuel production [6][7], and energy storage by batteries [8
PDF
Editorial
Published 26 Mar 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • modelling analysis of the optical performance of the proposed solar cell architecture was also carried out. Results showed that nanowires act as resonators, amplifying interference resonances and exciting additional wave-guided modes. The optimisation of the array geometrical dimensions highlighted a strong
  • [5][6][7][8], cavity modes [5][8][9][10][11], Fabry–Perót and whispering gallery modes [12], their characteristic high aspect ratio promotes anti-reflection, allowing for more light to be coupled into the active layer of the solar cell [13][14][15]. In addition, radial-junction nanowires have the
  • solar cell. Implied photocurrent densities close to 27 mAcm−2 are achieved, for a 2 μm thick c-Si absorber coated with nanowires. The enhanced optical performance, with respect to a flat device, is explained by excitation of resonances both inside the nanowires and in the bulk c-Si absorber. In addition
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Raman study of flash-lamp annealed aqueous Cu2ZnSnS4 nanocrystals

  • Yevhenii Havryliuk,
  • Oleksandr Selyshchev,
  • Mykhailo Valakh,
  • Alexandra Raevskaya,
  • Oleksandr Stroyuk,
  • Constance Schmidt,
  • Volodymyr Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2019, 10, 222–227, doi:10.3762/bjnano.10.20

Graphical Abstract
  • serves for decades in Si microelectronics [31] and CIGS solar cell technology [32][33]. Results and Discussion Characterization of original CZTS NC films The first observation made on the difference between the samples ink0 and ink1 was an unequal morphology of the films formed. Those formed from ink0
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • of performing KPFM measurements on nanoscale electrical devices [4]. In particular, the knowledge of the true potential of surfaces is required for the analysis of cross-sections of solar cell devices [5][6]. Thus, this work is the basis for future quantitative analysis of nanoscale devices even
PDF
Editorial
Published 10 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • measurements can help in engineering so that Zn/F-doped SnO2 can be considered as a typical transparent conducting oxide (TCO) suitable for solar cell applications. Thin films were prepared from the as-synthesized powders using spin-coating and found to have an apparent density of around 0.8 g/cm3. The
PDF
Album
Full Research Paper
Published 02 Jan 2019

Electrolyte tuning in dye-sensitized solar cells with N-heterocyclic carbene (NHC) iron(II) sensitizers

  • Mariia Karpacheva,
  • Catherine E. Housecroft and
  • Edwin C. Constable

Beilstein J. Nanotechnol. 2018, 9, 3069–3078, doi:10.3762/bjnano.9.285

Graphical Abstract
  • achieved giving η in the range of 0.47 to 0.57% which represents 7.8 to 9.3% relative to an N719 reference DSC set at 100%. Electrochemical impedance spectroscopy has been used to understand the role of the MBI additive in the electrolytes. Keywords: dye-sensitized solar cell; electrolyte; nanoparticles
  • previously reported [31]. Solar cell fabrication Commercial titania electrodes (opaque, Solaronix) were used for the working electrodes. Each was rinsed with EtOH and dried on a heating plate at 500 °C for 30 min. The electrodes were cooled to 60 °C and immersed in a MeCN solution (0.5 mM) of the iron(II
  • the counter electrode and this was then sealed using hot-melt sealing foil and a cover glass. The solar cell measurements used fully masked cells using a black coloured copper sheet with a single aperture placed over the screen printed dye-sensitized TiO2 square. The area of the aperture in the mask
PDF
Album
Supp Info
Full Research Paper
Published 21 Dec 2018

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

  • Franziska Ringleb,
  • Stefan Andree,
  • Berit Heidmann,
  • Jörn Bonse,
  • Katharina Eylers,
  • Owen Ernst,
  • Torsten Boeck,
  • Martina Schmid and
  • Jörg Krüger

Beilstein J. Nanotechnol. 2018, 9, 3025–3038, doi:10.3762/bjnano.9.281

Graphical Abstract
  • patterning; laser-induced forward transfer; micro-concentrator solar cell; photovoltaics; Review Introduction In the field of renewable energies, the largest growth by far on a global scale in 2015/2016 took place in photovoltaics. However, the share of renewables in total energy consumption has recently
  • increased only moderately, despite an enormous growth in the area of renewable energies. A major reason for this is the persistently strong increase in total energy demand [1]. This underlines the importance of the improvement of existing solar cell concepts and technologies in order to meet the high demand
  • fabrication methods for microabsorbers. In thin-film photovoltaics, Cu(In,Ga)Se2 (CIGSe) solar cells with an efficiency record of 22.9% for planar cells [2] and 19.2% for sub-modules [3] are among the leading technologies. Figure 1 shows the structure of a planar CIGSe solar cell representing the current
PDF
Album
Review
Published 12 Dec 2018

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • rods were incorporated in a polymethylmethacrylate (PMMA) layer on the rear side of a-Si:H solar cell. Under AM1.5 solar irradiation, a facile optical filter was used to scrutinize the effect of upconversion on the cell performance. Compared with a bare cell, the NaYF4:Yb3+/Er3+-based a-Si:H cell
  • cells, the hydrogenated amorphous silicon (a-Si:H) thin-film solar cell is one of the most promising candidates due to its high inherent absorption coefficient, short charge-carrier diffusion length and low production cost [1]. Films of a-Si:H with a wide bandgap of ca. 1.75 eV have a high absorption in
  • UC effect; however, it does not imitate the actual solar irradiation in practical devices. In the present work, the upconverting NaYF4:Yb3+/Er3+ nanorods were synthesized thorugh a hydrothermal method and their UC effect on NIR light harvesting in a-Si:H solar cell was scrutinized by using a facile
PDF
Album
Full Research Paper
Published 31 Oct 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • chromium (Cr) adhesion layer is used as the back contact for a copper zinc tin sulfide (CZTS) thin-film solar cell on a SLG substrate. DC magnetron sputtering is used for deposition of Mo and Cr films. The conductivity of Mo/Cr bilayer films, their microstructure and surface morphology are studied at
  • the back contact thickness to 600 nm. That is two thirds to half of the thickness that is currently being used for bilayer and single layer back contact for thin-film solar cells. We demonstrate the excellent properties of Mo/Cr bilayer as back contact of a CZTS solar cell. Keywords: back contact
  • properties have significant effects on the solar cell performance. This layer acts as an optical reflector to the photons that are not absorbed in the active medium, and as a metallic contact layer to transport drive out the photo-generated carriers [1][2]. In addition to these electro-optical properties
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • substructure of the solar cell, including the texture, thin passivation and contact layers. Inverted pyramidal textures of different sizes were included in the simulations. The simulations rapidly converge as long as the textures are small (in the (sub)micrometer range), while for larger microscale textures
  • (feature sizes of a few micrometers), this is not the case. Small textures were optimized to decrease the reflectance, and consequently, increase the absorption in the active layers of the solar cell. Decreasing the flat parts of the texture was shown to improve performance. For simulations of structures
  • front side of a solar cell structure. We quantify the simulation errors with a |ΔJSC| measure for the various number of sublayers and modes considered in the simulations. The analysis shows that RCWA is an efficient simulation tool for small textures, which is a further verification of the results
PDF
Album
Full Research Paper
Published 28 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • the hybrid perovskite (HP) photovoltaic system was documented in detail by numerous review papers covering all aspects of the preparative chemistry and photophysics of lead-based HPs, solar cell design, challenges and pitfalls on the way to the HP cells competitive with the silicon counterparts, as
  • 1.79 eV and an increase of the solar cell performance (Figure 3c) from 8.25% for the undoped Pb-HP to 11.33% for the CsSn0.1Pb0.9IBr2-based device [69]. The latter cell also exhibited a record Voc of 1.26 V amounting to ≈70% of the optical bandgap and vividly showing a high potential of such
  • simultaneous presence of the trimethylamine and SnF2 was found to be crucial both for conventional and inverted solar cell configurations. For example, the modification of an inverted FASnI3-based cell with SnF2 resulted in a spectacular PCE increase from 0.52 to 4.20% with a further increase to 7.09% (Table 1
PDF
Album
Review
Published 21 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • routes based on different precursors reported in the literature. By studying the film morphology, sub-bandgap absorption and solar cell performance, improved annealing procedures are found and the crystallization temperature is shown to be critical. In order to determine the optimized processing
  • ; hole transport material; solar cell; Introduction Antimony sulfide (Sb2S3) is a promising high band gap light absorber for solar cells [1][2][3][4][5]. The record efficiency of 7.5% [6] is comparable to that of other less investigated materials, such as the best lead-free perovskites [7], Cu2O [8] and
  • needed. Two basic factors that impact the solar cell performance of a given material are the device architecture, which defines the mechanism of charge separation, and the deposition method for the absorber, which affects the film and electronic material quality. Sb2S3 is commonly applied in an extremely
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • probe force microscopy under frequency-modulated excitation over a silicon nanocrystal solar cell, as well as against results obtained by intensity-modulated scanning Kelvin probe microscopy over a polymer/fullerene bulk heterojunction device. Moreover, we show how this simulation routine can complement
  • describe the general aspects of this simulation routine, and we compare it against experimental results from a previous work were single-point Kelvin probe force microscopy under frequency-modulated illumination (FMI-KPFM) was implemented over a silicon nanocrystal solar cell [3]. Analogously, we compare
  • stated that the SPV built-up time is closely related to the carrier diffusion length within each particular material. In a previous work [1], we implemented a single exponential decay model to fit the spectroscopy curves acquired over a silicon nanocrystal solar cell. In the following, using a novel
PDF
Album
Full Research Paper
Published 20 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • modulation (AM) and frequency modulation (FM) KPFM methods on a reference structure consisting of an interdigitated electrode array. This structure mimics the sample geometry in device measurements, e.g., on thin film transistors or on solar cell cross sections. In particular, we investigate how quantitative
  • electric potential landscape with local topographic information. Thus, KPFM is ideally suited to characterize of a variety of nanostructured semiconducting systems such as electronic devices [1] and solar cells [2]. To understand and improve the charge carrier generation and extraction within a solar cell
  • cross sections of a range of different solar cell devices, including organic [3][4][5], and inorganic [6] as well as hybrid perovskite solar cells [7][8][9][10][11][12][13][14][15]. In the course of one of our KPFM studies on a cross section of a perovskite solar cell under operating conditions [7] we
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage
  • performance; solar cell; tomographic AFM; Introduction Cadmium Telluride (CdTe) is an inexpensive thin-film photovoltaic with ca. 5% of the 2017 global market share for solar cells. To optimize the efficiency and reliability of these, or any electronic devices, a thorough understanding of their composition
  • curves can be analyzed to interpret several additional performance metrics, which are widely employed by the PV and solar power communities. The open-circuit voltage (VOC), for example, is the probe bias necessary for the photocurrent to pass from positive to negative values, i.e. when the solar cell
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • various groups for the characterization of organic devices [23][24][25][26] and, by using bias modulation (BM) KPFM, also for the measurement of the minority carrier lifetime in epitaxial Si solar cell materials [27]. In a variation of the bias or light modulation approach, a bias-based pump–probe
PDF
Album
Full Research Paper
Published 24 Apr 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • . Furthermore, band-gap tuning is also possible by application of tensile strain. Our results highlight a new family of 2D materials with great potential for solar cell applications. Keywords: density functional theory (DFT); photovoltaic applications; solar cell; two-dimensional semiconductors; Introduction
  • SiAs2 and GeAs2 as promising light harvesting semiconductor materials for solar cell applications. The extraction of a monolayer of these materials is likely to be feasible by mechanical exfoliation. Moreover, the calculated phonon spectrum reveals its high dynamical stability for both materials
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells

  • Hana Krýsová,
  • Josef Krýsa and
  • Ladislav Kavan

Beilstein J. Nanotechnol. 2018, 9, 1135–1145, doi:10.3762/bjnano.9.105

Graphical Abstract
  • poly(3-hexylthiophene) SSDSSCs. Their optimised BLs showed an overall increase in the solar cell efficiency, but the blocking function was not quantified, for example, by analysis of the pinhole area [13]. This was one of the motivations for this work. The blocking properties are often significantly
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • like in a dye-sensitized solar cell model system [49]. The influence of TiO2 on the molecular behavior and structure of both SP1 and SP2 benzothiazole derivatives has been also studied by FT-MIR spectroscopy, and the results are presented in Figure 11. The IR spectra of the SP1:TiO2 and SP2:TiO2
  • TiO2 layer. A gold electrode was deposited by thermal evaporation in vacuum (5 × 10−6 mbar). The current–voltage (I–V) characteristics were measured under illumination of a AM1.5 solar simulator (Oriel 150 W). The light power density was measured by a Newport Oriel P/N 91150V reference solar cell
PDF
Album
Full Research Paper
Published 26 Feb 2018

Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics

  • Furqan Almyahi,
  • Thomas R. Andersen,
  • Nathan A. Cooling,
  • Natalie P. Holmes,
  • Matthew J. Griffith,
  • Krishna Feron,
  • Xiaojing Zhou,
  • Warwick J. Belcher and
  • Paul C. Dastoor

Beilstein J. Nanotechnol. 2018, 9, 649–659, doi:10.3762/bjnano.9.60

Graphical Abstract
  • morphology of nanoparticles [22] (herein evaluated by solar cell performance). Particle size distribution The size of the nanoparticles has an impact on the overall number of layers of particles in an OPV device active layer (as 100 nm thick active layer has been found to be optimal), i.e., smaller particles
  • Class AAA solar simulator with an AM 1.5 spectrum filter. The light intensity was calibrated to 100 mW cm−2 using a silicon reference solar cell (FHG-ISE). (A) The Z-average size of poly(3-hexylthiophene) (P3HT):indene-C60 multiadducts (ICxA) NPs dialysed by crossflow and centrifugal ultrafiltration
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018
Other Beilstein-Institut Open Science Activities