Search results

Search for "thermal expansion" in Full Text gives 64 result(s) in Beilstein Journal of Nanotechnology.

Graphene–graphite hybrid epoxy composites with controllable workability for thermal management

  • Idan Levy,
  • Eyal Merary Wormser,
  • Maxim Varenik,
  • Matat Buzaglo,
  • Roey Nadiv and
  • Oren Regev

Beilstein J. Nanotechnol. 2019, 10, 95–104, doi:10.3762/bjnano.10.9

Graphical Abstract
  • a result of the cycling between high and low working temperatures that is typical in electronic devices [2]. In solid TIMs, delamination, which can occur due to differences in thermal expansion between the substrate and the TIM, will introduce thermally insulating air voids into the interface. In
  • liquid or paste-like TIMs, differences in thermal expansion between the hot and cold surfaces could result in the TIM leaking out of the interface, thus increasing the contact resistance. These malfunctions in the performance of TIMs could stem from their high viscosity values during application on
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • of the thermal expansion coefficients and/or directional enthalpy (or entropy) changes, as shown in [83]. Furthermore, crystallinity is also an important parameter that can influence the domain orientation. As reported by Register and co-workers [84], there are three different levels of orientation
PDF
Album
Review
Published 29 Aug 2018

Surface energy of nanoparticles – influence of particle size and structure

  • Dieter Vollath,
  • Franz Dieter Fischer and
  • David Holec

Beilstein J. Nanotechnol. 2018, 9, 2265–2276, doi:10.3762/bjnano.9.211

Graphical Abstract
  • temperature (similar to the thermal expansion), however, this is unlikely to have any significant effect (and is expected to be marginal in comparison to other simplifications). Finally, no significant influence of the particle shape is expected as its origin (i.e., the spatial extent of the electronic cloud
PDF
Album
Review
Published 23 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
PDF
Album
Review
Published 21 Aug 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • light-induced perturbation and thermal relaxation. In addition, by monitoring the sample temperature and analyzing the temporal evolution of the height change probed by AFM they were able to rule out possible contributions from the thermal expansion of the sample (we refer the reader to [16] and the
  • originate from a thermal expansion effect. Note here that the HOPG substrate displays a thermal expansion coefficient [22] in the out-of-plane direction close to that of the MAPbBr3 crystal [23] and that both samples are relatively similar in terms of size (0.5 mm thick for the HOPG vs ≈1 mm for the MAPbBr3
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • observed ESM amplitude signal. Electrostatic interactions are discussed to be an important additional parameter that can influence ESM experiments [28][30][31] and will be the subject of future research. Additionally, LATP is known to have a strong anisotropic thermal expansion [3]. LTP, which has the same
PDF
Album
Full Research Paper
Published 28 May 2018

The effect of atmospheric doping on pressure-dependent Raman scattering in supported graphene

  • Egor A. Kolesov,
  • Mikhail S. Tivanov,
  • Olga V. Korolik,
  • Olesya O. Kapitanova,
  • Xiao Fu,
  • Hak Dong Cho,
  • Tae Won Kang and
  • Gennady N Panin

Beilstein J. Nanotechnol. 2018, 9, 704–710, doi:10.3762/bjnano.9.65

Graphical Abstract
  • expression for compressibility-induced changes, while strain-related changes can be treated in a similar way to the thermal expansion description for supported graphene [7][8], where the strain is caused by a difference of thermal expansion coefficients for graphene and the substrate. Besides, monomers and
  • pressure derivative. In the present study, β0 and β' values of 1250 GPa and 1 were used, respectively [17]. The strain-induced shift, by analogy with thermal expansion strain [7][8][18], can be written as: where is a biaxial strain rate (in our calculations we used the values of −58 and −144 cm−1/% for G
PDF
Album
Full Research Paper
Published 22 Feb 2018

PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

  • Chengxi Zhang,
  • Weiling Luan,
  • Yuhang Yin and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2017, 8, 2521–2529, doi:10.3762/bjnano.8.252

Graphical Abstract
  • the coefficient of thermal expansion, and β is the Debye temperature), increasing temperature leads to the decease of the band gap. This phenomenon makes it easy for the charge carriers (electrons and/or holes) to be activated and to move to a low energy state in comparison with the charge carriers at
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2017

Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

  • Nikolay Nedyalkov,
  • Mihaela Koleva,
  • Nadya Stankova,
  • Rosen Nikov,
  • Mitsuhiro Terakawa,
  • Yasutaka Nakajima,
  • Lyubomir Aleksandrov and
  • Reni Iordanova

Beilstein J. Nanotechnol. 2017, 8, 2454–2463, doi:10.3762/bjnano.8.244

Graphical Abstract
  • with dimensions of 10 × 10 × 3 mm and polished. We chose borosilicate glass because of its low thermal expansion coefficient and good resistance to the high thermal gradients likely to be induced by laser processing. The samples were irradiated by nanosecond and femtosecond laser pulses with different
PDF
Album
Full Research Paper
Published 21 Nov 2017

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • ]. However, the integration with Si requires overcoming a number of specific problems inherent to the dissimilarities in the physical properties of both materials, namely, lattice mismatch, significant differences in thermal expansion coefficients, and formation of antiphase domains due to the fact that GaAs
  • level structure of the nanowires, a detailed investigation on the temperature-dependent PL is required. Before the presentation of the results, we will mention briefly the common temperature dependence of the bandgap in a semiconductor. As the temperature increases, the thermal expansion coefficient of
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017

Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites

  • Claudio Larosa,
  • Niranjan Patra,
  • Marco Salerno,
  • Lara Mikac,
  • Remo Merijs Meri and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2017, 8, 2026–2031, doi:10.3762/bjnano.8.203

Graphical Abstract
  • the organic matrix. DTA reveals a broad, exothermic peak followed by a small shoulder, which is believed to be due to the interaction and thermal expansion of MWCNTs in the PC matrix. No other thermal changes are observed after 700 °C. Figure 6 shows the DSC analysis of the PC/MWCNT film with 1 wt
PDF
Album
Full Research Paper
Published 27 Sep 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • with increasing growth temperature. The residual stress is described as internal stress in nanostructured materials. The generation of residual stress during growth can be attributed to: (i) thermal stress, which occurs because of the difference in thermal expansion coefficient between the substrate
PDF
Album
Full Research Paper
Published 10 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • benefits resulting from the fact that the deposition takes place at or around room temperature. The two most important ones are the capability to coat thermolabile substrates [20][21][22] and the avoidance of mechanical stress otherwise introduced by different thermal expansion coefficients of coating and
PDF
Album
Review
Published 28 Jul 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • wafer for device fabrication in a wafer bonder tool has not been established yet. Both techniques have in common that the strongly different thermal expansion coefficients of graphene (−6 × 10−6 K−1) [11][12] and the copper substrate (16.5 × 10−6 K−1) [13] typically lead to wrinkles and cracks in the
PDF
Album
Review
Published 15 May 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • PDMS were supported on a 1 mm thick glass substrate. The layer thicknesses in the two-layer stamps were determined in order to minimize the distortion of the hard PDMS layer that can occur due to the difference between the stiffness and thermal expansion coefficients of hard PDMS and those of the soft
PDF
Album
Letter
Published 12 May 2017

Vapor-phase-synthesized fluoroacrylate polymer thin films: thermal stability and structural properties

  • Paul Christian and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2017, 8, 933–942, doi:10.3762/bjnano.8.95

Graphical Abstract
  • thus larger lattice distances) upon temperature increase, corresponding to thermal expansion of the unit cell. At 76 ± 2 °C, a sudden decrease in the diffracted intensity is then observed, denoting the melting point of the lamella. As the temperature is further increased to 100 °C, no change is
  • final lamella arrangement within the resolution of the experiment (2 °C/min). On the other hand, a more pronounced shift of the Bragg peak positions towards higher q-values is noted upon cooling. To quantify the thermal expansion/contraction of the p-PFDA unit cell, the coefficients of linear thermal
  • monitored without the need of long integration times. Above and below the transition point, the data features the thermal expansion of the p-PFDA film. The observed changes do not depend on whether the experiment is performed while heating or cooling, hinting at a reversible behavior. This also means that
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2017

Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

  • Gheorghe Stan,
  • Richard S. Gates,
  • Qichi Hu,
  • Kevin Kjoller,
  • Craig Prater,
  • Kanwal Jit Singh,
  • Ebony Mays and
  • Sean W. King

Beilstein J. Nanotechnol. 2017, 8, 863–871, doi:10.3762/bjnano.8.88

Graphical Abstract
  • onto the sample of interest and thermal heating of the sample occurs when the IR wavelength coincides with the IR vibrational absorption bands characteristic of the material [24][27]. The photoinduced heating causes a thermal expansion of the sample that is then detected as an oscillation in an AFM
  • kHz. This offers improved sensitivity over the OPO IR laser source used in previous investigations [32] and thus provides a better signal-to-noise ratio for the low thermal expansion of the organosilicate material. The oscillation amplitude of the probe at this frequency was then plotted versus the
PDF
Album
Full Research Paper
Published 13 Apr 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • amplitude variation of mean applied stress Δσ (pressure) by the simple relation ΔT = −ΓTασ where T is the absolute temperature of the sample, Γ is the material thermoelastic constant, given by Γ = α/ρcp where α is the thermal expansion coefficient, ρ the density and cp the specific heat at constant pressure
  • . For graphene we obtain ΓTα = 0.19 GPa−1 at room temperature (Tα = 300 K) using the thermal expansion coefficient α = −3 × 10−6 K−1 [18], ρ = 2.25 × 103 Kg m−3 and cp = 2.125 × 103 J·kg−1·K−1 [19]. The negative sign of the thermal expansion coefficient implies that subjecting the graphene slat to
PDF
Album
Full Research Paper
Published 03 Jan 2017

Annealing-induced recovery of indents in thin Au(Fe) bilayer films

  • Anna Kosinova,
  • Ruth Schwaiger,
  • Leonid Klinger and
  • Eugen Rabkin

Beilstein J. Nanotechnol. 2016, 7, 2088–2099, doi:10.3762/bjnano.7.199

Graphical Abstract
  • thickness [21], whereas annihilation of vacancies at the grain boundaries helps to relax compressive stresses in the film formed during heating due to the mismatch of thermal expansion coefficients between the film and the substrate. The rim-less shape of the dewetting holes observed far from the indented
PDF
Album
Full Research Paper
Published 28 Dec 2016

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • concentration of defect states and a mechanical stress induced in the system by the difference between the thermal expansion coefficients of Ge and SiO2 and the large lattice constant of Ge [29][30][31][32]. The high temperature used for the synthesis excludes the use of low-cost materials such as flexible or
PDF
Album
Full Research Paper
Published 21 Oct 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
PDF
Album
Full Research Paper
Published 12 Aug 2016

Thermo-voltage measurements of atomic contacts at low temperature

  • Ayelet Ofarim,
  • Bastian Kopp,
  • Thomas Möller,
  • León Martin,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 767–775, doi:10.3762/bjnano.7.68

Graphical Abstract
  • with a variable intensity up to 3 mW onto the sample. The influence of thermal gradients onto atomic-size contacts usually causes geometry changes of the tips due to thermal expansion caused by the deposited energy. For our experiment we obtain from simulations that the distance change between the tips
PDF
Album
Full Research Paper
Published 30 May 2016

Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer

  • Natsumi Inada,
  • Hitoshi Asakawa,
  • Taiki Kobayashi and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2016, 7, 409–417, doi:10.3762/bjnano.7.36

Graphical Abstract
  • disadvantage, cantilevers are typically coated with a thin metal layer to provide large amplitude response [21][23][24][25]. The difference in the thermal expansion coefficients between the cantilever material (e.g., silicon or silicon nitride) and thin metal layer (e.g., gold or aluminum) induces a large
PDF
Album
Supp Info
Full Research Paper
Published 10 Mar 2016

Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

  • Kuang-Yang Kou,
  • Yu-En Huang,
  • Chien-Hsun Chen and
  • Shih-Wei Feng

Beilstein J. Nanotechnol. 2016, 7, 75–80, doi:10.3762/bjnano.7.9

Graphical Abstract
  • used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet
  • relaxation by microcrack formation, is also observed in the ZnO thin film grown by plasma-assisted molecular-beam epitaxy [10]. Therefore, for textured, ZnO@B TCO, the residual strain induced by the lattice mismatch and the difference of thermal expansion coefficient is relaxed, leading to an apparent
  • , optical, and electrical characteristics of LPCVD-grown ZnO are sensitive to the growth temperature, pressure, and flow rate, TCO can be tuned according to the application. ZnO films grown on a sapphire substrate undergo residual strain induced by the lattice mismatch and the difference in thermal
PDF
Album
Full Research Paper
Published 20 Jan 2016

Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires

  • Suvankar Das,
  • Amitava Moitra,
  • Mishreyee Bhattacharya and
  • Amlan Dutta

Beilstein J. Nanotechnol. 2015, 6, 1970–1977, doi:10.3762/bjnano.6.201

Graphical Abstract
  • employs the method of atomistic simulation to estimate the thermal stress experienced by Si/Ge and Ge/Si, ultrathin, core/shell nanowires with fixed ends. The underlying technique involves the computation of Young’s modulus and the linear coefficient of thermal expansion through separate simulations
  • normal stresses on clamped Si/Ge and Ge/Si CSNWs due to variation in the operating temperature. The calculation of thermal stress typically involves the measurement of Young’s modulus and the thermal expansion of a solid. Unlike the composite structures of macroscopic dimensions, core–shell nanowires
  • composite system. In the same way, the presence of an interface modulates the state of phonons in these nanowires and the analytical estimation of the net thermal expansion by conventional thermo-mechanical theory becomes unfeasible. In view of these difficulties, atomistic simulations have been employed to
PDF
Album
Full Research Paper
Published 02 Oct 2015
Other Beilstein-Institut Open Science Activities