Search results

Search for "agglomeration" in Full Text gives 269 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • diameter, ethylene glycol (EG) was used as a solvent and also acted as a reducer. Silver nitrate (AgNO3) was used as source of silver. The stabilizer used in the reaction was PVP, which also acted as a capping agent. In addition to stabilizing and capping, PVP also prevented the agglomeration of silver
PDF
Album
Full Research Paper
Published 01 Jul 2021

Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?

  • Kirill O. Paperzh,
  • Anastasia A. Alekseenko,
  • Vadim A. Volochaev,
  • Ilya V. Pankov,
  • Olga A. Safronenko and
  • Vladimir E. Guterman

Beilstein J. Nanotechnol. 2021, 12, 593–606, doi:10.3762/bjnano.12.49

Graphical Abstract
  • (less than 3 nm in size) [14][20], reprecipitation of platinum from small NPs into larger ones [14][21][22], agglomeration of NPs in the process of their surface diffusion [9][22], and NP shape change [4][23]. This can happen due to the oxidation of the carbon carrier, which causes the detachment of
  • increasing NP size [14][22][32][33][34][35][36]. The probability of agglomeration and coalescence of NPs during a stress test also decreases with an increase in the average distance between platinum NPs in catalysts, which results in an increase of their stability [14]. Apparently, a relatively high
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • contrast, solvothermally synthesized nanoceria was coated with, on average, a monolayer of citrate, intentionally applied to inhibit agglomeration [35]. It is assumed that the citrate coating was dissolved as surface cerium ions were solubilized. The reduction in absolute zeta potential of the partially
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • polyol synthesis method involves the reduction of a metal salt in the presence of a boiling solvent at elevated temperatures (>160 °C). In order to protect the nucleated particles and avoid agglomeration, the most commonly used adjuvant is PVP [139]. One of the advantages of this method is that ethylene
PDF
Album
Supp Info
Review
Published 14 May 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • temperatures and leads to the decomposition of the fuel resulting in the formation of gaseous by-products, such as CO2, NO2, or NH3, and the generation of heat. On one hand, this initiates a foaming reaction, on the other hand, this prevents from grain growth and agglomeration processes [10][42][43][45][46][47
  • ][48][49][50]. Therefore, one of the advantages of this method is that the obtained materials are usually well-crystalline fine-grained powders with a low degree of agglomeration. Besides that, the SCS method is a one-step process that does not need additional post-reaction treatments, for instance
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • natural coalescence, is decreased faster and more efficiently when the masses coalesce non-uniformly toward a state of equilibrium [10]. Similarly, Reis et al. used these principles to analyze how the electrostatic interactions between dust particles are minimized during particle agglomeration in air
PDF
Album
Full Research Paper
Published 06 May 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • the precursor molecules (Figure 1d). Assuming that the two described methods are effective, an initial well-defined local deposit is formed in both cases (Figure 1e). Upon further precursor dosage, the AG process occurs and leads to further agglomeration of material on top of the initial deposit
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • , large ion doses lead to gas agglomeration and the formation of bubbles, manifesting as strong surface swelling [23]. Furthermore, the associated sputter rate of light ions is roughly an order of magnitude smaller than that of Ga ions [21][22]. In addition, the low ion mass has further implications. The
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • that aggregation played a large role in NP transformations, except at high concentrations, due to protection by the PVP, and at later times because of possible protein interactions in the RPMI medium [38][39]. This result is in agreement with previous studies that found that aggregation/agglomeration
  • NP agglomeration immediately before exposure. The plates were then incubated for 24 h at 37 °C and 5% CO2. Each exposure study was run in triplicate. After 24 h each well was collected, and the cells and supernatant were separated using a centrifuge (300g, 10 min). The supernatant was used for Ag
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • scaffold of W3O9 units. By applying scanning tunneling microscopy to the W3O9–(W3O9)6 structures, individual units underwent a tip-induced reduction to W3O8. At elevated temperatures, agglomeration and growth of large WO3 islands, which thickness is strongly limited to a maximum of two unit cells, were
  • at elevated temperatures, which allows for an energy contact by agglomeration due to strong intermolecular interactions. After annealing the sample at 900 K, the formation of larger islands is observed. The thickness of these islands is always approx. 0.6 nm, which indicates the formation of a WO3
PDF
Album
Full Research Paper
Published 16 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • unique surface characteristics [228]. Therefore, for safe biological applications (i.e. in the medical and food industry), this approach would be preferred as an alternative for methods that necessarily require the use of chemical stabilizers [108][112]. In addition, the small NP size, low agglomeration
  • agglomeration, higher purity, and higher crystallinity compared to those produced by chemical methods [230]. The method is simple and reproducible [230]; however, the process runs using high operating temperatures, and more specifically, the center of the reaction tube may not reach the setpoint temperature due
  • to the short residence time inside the reactor and finite heat transfer from the wall [124]. In general, although physical methods can produce nanoparticles with high purity, most of them are very expensive and may lead to agglomeration of products [140]. Based on all the disadvantages explained here
PDF
Album
Review
Published 25 Jan 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • no fusion but rather agglomeration is observed. Above 10 V, the patches seem to decay into smaller pieces, see Figure S4, Supporting Information File 1. A voltage of 5 V is optimal regarding the fusion results as shown in Figure 3. OD had to be low to prevent cluster formation. The number of merged
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

The role of gold atom concentration in the formation of Cu–Au nanoparticles from the gas phase

  • Yuri Ya. Gafner,
  • Svetlana L. Gafner,
  • Darya A. Ryzkova and
  • Andrey V. Nomoev

Beilstein J. Nanotechnol. 2021, 12, 72–81, doi:10.3762/bjnano.12.6

Graphical Abstract
  • simulation and the data on the size distribution of Cu3Au clusters obtained by laser deposition [3]. An analysis of the shape and distribution of the Cu3Au clusters on the substrate indicates that the agglomeration processes were suppressed in this case [3]. The reason for that may be the wide spatial
  • linear shape, obtained by the agglomeration of many primary clusters. Therefore, its true size can be much larger. Consequently, we can conclude that with the chosen simulation parameters (i.e., the size of the system and the number of atoms contained in it) it was possible to repeat the results obtained
  • approximate diameter value of the spherical cluster (D = 4.61 nm). In addition to this basic group, another five particles with a size of up to 17000 atoms were discovered, which were formed by agglomeration at sufficiently low temperatures. We observed a similar pattern for all of the heat energy removal
PDF
Album
Full Research Paper
Published 19 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • , consequently, their cytotoxicity. This assumption is well supported by cell viability, ion release, cellular uptake, and cell cycle assays, even if other factors (e.g., surface functionalization and subsequent effects, such as agglomeration) also influence these processes. However, it was shown that silica
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • have applied HMDS treatment for HIM [17][60][64][66]. (IV) Air drying: During air drying, the liquid–gaseous boundary is crossed, leading to strong surface tension, which acts on the sample and causes damage to the structure, leading to agglomeration and collapse. Consequently, air drying should only
PDF
Album
Review
Published 04 Jan 2021

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • calcination temperatures of at least 500 °C for a minimum of 1–2 h, which can lead to particle growth, agglomeration and to the formation of secondary phases. It should be noted that, in general, low calcination temperatures favor the generation of smaller particles with narrow bandgaps and promote the
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • speed led to a deviation of the composition from the data obtained in the basic version of the calculation. A significant increase in the flux intensity leads to higher agglomeration of the metal atoms above the surface of the substrate. The structure of the resulting nanofilms directly depends on the
PDF
Album
Full Research Paper
Published 24 Nov 2020

Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation

  • Shuai Yang,
  • Xiaojing Cui,
  • Rui Guo,
  • Zhiyi Zhang,
  • Shengbo Sang and
  • Hulin Zhang

Beilstein J. Nanotechnol. 2020, 11, 1655–1662, doi:10.3762/bjnano.11.148

Graphical Abstract
  • , and 1.0 wt %. Figure 2b shows SEM images after doping with different concentrations. It can be found that all spinning solutions yield a uniform fiber film without GR agglomeration after electrospinning. Figure 2c shows the FTIR spectra of samples with different doping concentrations. Further, XRD was
PDF
Album
Full Research Paper
Published 02 Nov 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • taking into account the transmittance of the ablation liquid at 1064 nm. The ablation time for each sample was set to 20 min. Figure 1 shows a schematic of the pulsed laser ablation system used in this work. A rotating motor was used to help prevent the aggregation and agglomeration of particles during
  • intensity of peaks (surface-enhanced Raman scattering) due to the reduced agglomeration and aggregation of particles and the small size of the Ag2S particles prepared under the effect of the CTAB surfactant [29]. Inset of Figure 4 is the Raman spectrum of thiourea solution, in which three peaks were
  • absorption compared with that prepared in the pure Tu solution. This result can be ascribed to the increased stability of the colloidal particles with CTAB as capping agent. Moreover, this finding indicated that no severe agglomeration of NPs occurred when CTAB was added to the Tu solution. The concentration
PDF
Album
Full Research Paper
Published 21 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • necessary. This has not been investigated within this work. Up to this etching depth, the nanostructures are stable and withstand the drying process. There is no agglomeration or pattern collapse. However, with increasing etching depth, the structures become more fragile. Figure 5 shows SEM images of a
  • the Pd-covered wafers, the Pt-covered wafers exhibited a homogeneous sponge-like structure without a bundling effect (Figure 7c,d). The structures are approx. 630 nm deep. The Pt particles seem to remain on the surface but show a partial agglomeration. This effect can be seen in Figure 7d. Despite the
PDF
Album
Full Research Paper
Published 23 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • agglomeration (i.e., highly porous supports) [16]. After years of development, conventional synthesis methods still have problems meeting the requirements for scalability of the synthesis and long-term stability of the resulting catalyst. In this work, we report on a novel one-step synthesis approach that not
  • , on which the Pt-NPs can then easily diffuse. Hence, these supports often require additional functionalization steps for avoiding metal particle agglomeration, which reduces the electrical conductivity and durability of the support. In sharp contrast, the one-step synthesis of Pt/CNW presented herein
  • narrow PSDs due to the suppression of particle growth by agglomeration but also in increased long-term stability as was observed for all Pt/CNW catalysts when compared to HiSPEC4000 (see Figure 8). The respective cyclic voltammograms of the samples mentioned in Figure 7 and Figure 8 are given in
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • [8][35]. On the one hand, these approaches are advantageous since as-prepared nanoparticles covered by surfactant or polymer molecules become more stable and less susceptible to fast agglomeration. On the other hand, the nanoparticle surfaces become covered by these compounds, which are sometimes
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • Abstract Colloidal systems consisting of monodomain superparamagnetic nanoparticles have been used in biomedical applications, such as the hyperthermia treatment for cancer. In this type of colloid, called a nanofluid, the nanoparticles tend to agglomeration. It has been shown experimentally that the
  • fill in this gap, this study presents a numerical simulation model that elucidates how the nanoparticle coating affects the nanoparticle agglomeration tendency as well as the effective magnetic relaxation time of the system. To simulate the self-organization of the colloidal nanoparticles, a stochastic
  • performed to reduce the sensitivity of nanoparticles to air, humidity and acidity. In addition, it allows for the functionalization and absorption of proteins and creation of hydrophilic molecules at the surface of the nanoparticles to prevent agglomeration, reducing capillary obstruction risk. Coating can
PDF
Album
Full Research Paper
Published 12 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • ][10], which are largely attributed to the interphase inhomogeneity, poor distribution, and agglomeration of BTO nanoparticles in the polymer matrix. You et al. [10] observed an increase in the permittivity (from 4 to 14) of poly(arylene ether nitrile) filled with 40 wt % polyaniline-functional-BTO
PDF
Album
Full Research Paper
Published 10 Aug 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • circulation time than dextran-coated SPIONs [39], having better colloidal stability and reduced agglomeration tendency. In addition, very importantly, the PEG coating did not degrade the magnetization properties of the nanoparticles [82]. Chen et al. [40] showed that SPIONs functionalized with PEG, grafted
  • medium, led to nanoparticle agglomeration. Dulbecco's Modified Eagle Medium (DMEM) with added serum yielded the highest nanoparticle stability compared to other media [54][87]. Also, PVA-coated SPIONs were not internalized by cells when the cell culture medium had serum in it. Without serum cell uptake
PDF
Album
Review
Published 27 Jul 2020
Other Beilstein-Institut Open Science Activities