Search results

Search for "alignment" in Full Text gives 312 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • according to the alignment and response of magnetic dipoles, magnetic materials can be divided into diamagnetic, paramagnetic [31], ferromagnetic, ferrimagnetic, and antiferromagnetic. Diamagnetism of the material can be attributed to the orbital angular momentum, which is a phenomenon in which
PDF
Album
Review
Published 19 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • appropriate beam alignment and aperture selection, the emission from a single atom is selected. Since the source is atomically sharp, the virtual source size is exceptionally small and the source brightness is exceptionally high. With a small intrinsic energy spread of the helium ions of less than 1 eV
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • alignment on a large scale and were characterized by UV–vis spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and PL spectroscopy. The luminescent AgNWs exhibited red emission, which was accredited to deep holes. The SEM results confirmed the formation of AgNWs of 3.3 to 4.7 µm in
  • alignment and density of AgNWs can be easily adjusted by increasing the number of times of water washing. Water, with a very high surface tension of 72.75 × 10−3 N·m−1 at 20 °C, tends to bundle the hydrophilic AgNWs together [55]. The literature has shown the fabrication of conducting PET films using
  • predominantly by changing the PVP/AgNO3 ratio, as reported earlier [32]. It has been suggested that the parallel arrangement of silver nanowires may improve the conductivity and flexibility of PET films coated with AgNW ink. Thus, more studies are required regarding the alignment of AgNWs on the PET film and
PDF
Album
Full Research Paper
Published 01 Jul 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • images and the STM topography. Also, the Δf variation between rim and valley areas in both images changes only marginally. The additionally imaged adsorbates (dots or ring-like features) allow, thereby, the precise alignment between the subsequently acquired data sets. Work function variation While the
PDF
Album
Letter
Published 17 Jun 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • terraces separated by monoatomic steps edges are observed. The preferential alignment of the step edges is along the [110] directions. C60 islands are found distributed on all surfaces, but always along a step edge. They present favorable edge directions, following the sixfold symmetry of the C60 lattice
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • band alignment between the semiconductor and rGO, the electron acceptor functionalization of the analyzed gas, and the p-type conductivity of the rGO. Thus, the electron-depleted WO3 surface is more sensitive to the adsorption of acetone molecules and the transition of electrons from the adsorbed gas
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • hole diameters by employing Equation 1. For quantitative analysis of the STIM signal, a proper alignment of the sample is crucial. A beam shift needs to be avoided to ensure a perpendicular beam on the sample and the imaging area must be centered above the hole in the conversion plate. In order to
PDF
Album
Full Research Paper
Published 26 Feb 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • ) ternary oxide layer [19], which is based on a mixed Cu–O top layer with an alignment of Cu atoms along the [100] direction [20]. The Cu surface rows were shown to act as preferential adsorption sites for W3O9 nanoclusters. In all the above-mentioned studies, the W3O9 clusters were imaged with submolecular
  • substrate and, thus, they should be special attraction points for adsorbates. As shown in Figure 1c and Figure 1d, it is very probable that W3O9 clusters prefer to adsorb these defects inside the trenches of the z’-TiOx phase. The result is a 1D alignment of the clusters along the direction of the stripes
  • characteristics of the oxide phase, either a 1D or a 3D alignment of the clusters was observed by STM. On the rectangular z’-TiOx phase, the clusters were adsorbed almost exclusively on the numerous holes in the oxide film, forming stripes of single molecules, while on the hexagonal w’-TiOx phase, the coincidence
PDF
Album
Full Research Paper
Published 16 Feb 2021

Toward graphene textiles in wearable eye tracking systems for human–machine interaction

  • Ata Jedari Golparvar and
  • Murat Kaya Yapici

Beilstein J. Nanotechnol. 2021, 12, 180–189, doi:10.3762/bjnano.12.14

Graphical Abstract
  • compared to the first trial. This is a reasonably good speed for a thresholding-based algorithm approach in which a pattern detection accuracy of up to 100% was achieved, and in alignment with earlier EOG-based spellers, which range from 2.4 to 12 CPM [26]. If the eye mouse is to be used only to facilitate
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • ][19][20][21][22]. However, the fact that PM consists of micrometer-sized patches only represents a significant limitation of potential applications. Another limitation of the technical usability is the need for oriented alignment of the patches. Due to the vectorial transport of protons through PM
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • -corrected binding energy of −1.66 eV is assessed to be the optimum adsorption geometry for a single PTCDA molecule on a CaF2(111) surface. In this geometry, the PTCDA molecule is aligned with the long axis along the direction, which corresponds to an alignment with an angle of 30° off a CaF2 direction
PDF
Album
Full Research Paper
Published 26 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • layer is not a sufficient condition for decoupling. Although it reduces wave function overlap with the substrate, it can in fact promote charge transfer via tunneling. The determining factor is the energy level alignment of the frontier orbitals of the adsorbate relative to the Fermi level (EF) of the
  • , whereas on a low-ΦMgO substrate, charge transfer is observed. In the former (the “vacuum level alignment” regime) the molecules are electronically decoupled, while in the latter, the electronic levels are tied to the Fermi level of the underlying Ag(100). The equilibration process for this “Fermi level
  • function for charge transfer, it is convenient to plot the work function after saturating the surface with molecules (Φmol) as a function of ΦMgO. This is shown in Figure 7 for both 5A and 6P on 2 ML MgO(100)/Ag(100). For the 5A case, the regimes of vacuum level alignment and Fermi level pinning are
PDF
Album
Full Research Paper
Published 01 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • underlying hBN/Cu(111) support. This template featured a moiré pattern with areas of low local work function (pores, P) and high local work function (wires, W) [25][29][30], which was reflected by the molecular level alignment, as measured by dI/dV spectroscopy [28][35][36][37]. On pore areas, the MOs were
  • = 0.37 molecules/nm2). Accordingly, distinct differences were observed in the unit cell dimensions and the intermolecular alignment, even though the N···H interactions contributed to the self-assembly in both cases. At the same time, the intermolecular distance along the unit cell vector b was similar on
  • on hBN to the reduced site-specific molecule–support interactions. Indeed, distinct registries of the derivative 1 on the Ag(111) atomic lattice were reported [48]. However, additional effects potentially perturbing the intermolecular alignment, such as subtle differences in the pyridine tilt angle
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • . Keywords: decoupling; fluorination; metal–organic interfaces; organic pi-conjugated molecules; X-ray standing wave technique; Introduction The performance of organic (opto)electronic devices is strongly affected by the energy level alignment at the various interfaces in such devices [1][2][3
  • ]. Fluorination is a viable way to change the ionization energies (IEs) of organic semiconductor thin films [4][5][6], which are an important parameter for energy level alignment [7][8]. Moreover, at organic–metal interfaces, fluorination is believed to decrease the coupling strength between the substrate and the
  • adsorbate [9][10][11]. However, at such interfaces, vertical adsorption heights [12][13], interface dipoles (vacuum level shifts) [9][14] and consequently the energy level alignment [15][16][17] are affected by fluorination. Furthermore, fluorination can change the molecular multilayer growth [18][19][20
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • the conditions at which switching from the parallel to the antiparallel alignment of the neighboring F-layers leads to a significant change of the superconducting order parameter in superconductive thin films. We experimentally study the transport properties of a lithographically patterned Nb/Co
  • ferromagnetic (F) layers separated by thin superconducting layers, in which the superconducting order parameter is maintained due to the proximity to a thick superconducting bank (S-bank). Switching from the antiparallel (AP) to the parallel (P) alignment of neighboring F1 and F2 layers leads to a significant
PDF
Album
Full Research Paper
Published 07 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • dotted lines) and those of pentacontane (white dotted lines) running underneath. For the corresponding large-scale image see Figure S5 in Supporting Information File 1. Imaging conditions: Iset = 130 pA, Vbias = −0.65 V. (b) STM current image showing the alignment of the chains of the tetradecyloxy
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • electrode electrospinning method (MPEM). It was found that the alignment of the composite nanofibers (CNFs) improved their electrical conductivity. Therefore, this study provided a convenient and straightforward approach to synthesize ordered porous carbon/graphene CNFs (CGCNFs) with a high number of
  • the fabricated CGCNFs were enhanced by adding deionized water (DIW) to the spinning solution. The alignment and the increased number of mesopores in the CGCNFs significantly enhanced the electrochemical performance of these electrodes, which was corroborated by an increase in the specific capacitance
  • CGCNF electrochemical performance. By improving fiber alignment, increasing the number of mesopores and enhancing the electrode specific surface area, one can effectively improve the electrochemical performance of an electrode. These improvements can significantly contribute to the electronic and ionic
PDF
Album
Full Research Paper
Published 27 Aug 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • [19]. Although optical beam deflection (OBD) techniques are traditionally preferred for their lower noise, they require bulky components and precise optical alignment. Prohibitively large instruments with optical readout are difficult to integrate into electron or ion microscopes and re-alignment of
PDF
Album
Full Research Paper
Published 26 Aug 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • varying the thickness of the N spacer to organize antiparallel (AP), parallel (P) or non-collinearly aligned F layers [27]. Also, the presence of superconducting correlations in the same F/N/F system would favor AP alignment for singlet pairing or a NC configuration to generate a long-range triplet
  • condensate. To the best of our knowledge the interaction of singlet superconductivity and exchange coupling was first considered theoretically in [28][29] and different magnetic re-ordering processes, such as the transition from parallel to antiparallel alignment [29] or the suppression of RKKY interaction
  • following work of the same group [39] the modification of IEC by hydrogen uptake was reported. An advantage of niobium as N spacer is that it is the superconducting material with the highest bulk TC = 9.3 K among all elemental superconductors. However, the thickest Nb spacer layer where AP alignment is
PDF
Album
Full Research Paper
Published 21 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • the tilt series was ±70° with pictures taken every 1°. Image alignment and 3D reconstruction was carried out with FEI tomography acquisition software Inspect 3D after the acquisition of 140 images. The movies of the tomographic reconstruction for each hollow NW were performed using Amira 3D software
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • with the bands of the metal substrate, which results in changes of the intrinsic optical and electronic properties of the adsorbed molecule. This process is referred to as hybridization, which may be accompanied by the reduction of the HOMO–LUMO gap, the change of the energy-level alignment, and even
  • determined work functions and ionization energies. In contrast to Fermi level pinning, where binding energy shifts are not correlated to the work function change, we suggest that the vacuum level alignment is responsible for the energy level alignment since the work function change is sufficient to explain
  • is consistent with vacuum level alignment (see section “Valence band structure and work function change” above). The origin of the more pronounced broadening as well as the asymmetric line shape [45] of the C 1s level in the case of DBP on bare Ni(111) may stem from a variety of different adsorption
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • . Evidently, the molecular superstructure matches the period of the reconstruction, which is reflected by the alignment of molecule rows with the discommensuration lines. A single row of C42H28 occupies the top of the soliton walls and the narrow hcp stacking domain, while three rows of C42H28 reside atop the
  • experiments presented here, the LUMO experiences changes in its energy while the HOMO is essentially pinned, which at first sight contradicts the alignment of the orbitals with the vacuum level. However, C42H28 is an electron donor and has the propensity to transfer negative charge to the substrate, which
PDF
Album
Full Research Paper
Published 03 Aug 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • and K′ by circularly polarized light [32]. The potential as decoupling layer for molecules may become even more appealing by the fact that monolayers of transition metal dichalcogenides can be grown in situ on different metal surfaces, where the precise hybridization and band alignment depend on the
  • nature of the substrate [33]. One may thus envision tuning the bandgap alignment for decoupling either the lowest unoccupied (LUMO) or the highest occupied molecular orbital (HOMO) of the molecules. While MoS2 on Au(111) has already been established as an outstanding decoupling layer [26], we will now
  • properties of the substrate, we refrain from a definite assignment. In any case, our data clearly shows that the HOMO is at or within the conduction band of MoS2. By comparison with simulations, we thus arrive at a clear identification of the energy level alignment. Most notably, we find that the LUMO
PDF
Album
Full Research Paper
Published 20 Jul 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • input waveguide of the chip using a fiber array unit (FAU) glued to its end. The chip is mounted on a sample holder. The FAU is aligned using manual translation stages for coarse alignment and piezoelectric stages for fine alignment. The polarization of the light coupled out by the fiber is
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • oriented pyrolytic graphite (HOPG) or SiO2, it has been reported that CuPc attains different orientations resulting in substantial differences in donor–acceptor energy level alignment at the interface. Thus, ordering and orientation of these molecules significantly affect charge carrier injection and
PDF
Album
Full Research Paper
Published 19 May 2020
Other Beilstein-Institut Open Science Activities