Search results

Search for "cathode" in Full Text gives 159 result(s) in Beilstein Journal of Nanotechnology.

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • material. The highest capacitance achieved was 33 mF·cm−2 at a current density of 1 mA·cm−2, demonstrating potential application in supercapacitors. We further used the material as a cathode for the hydrogen evolution reaction (HER) with an onset potential of approximately −0.2 V vs RHE. The onset
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • cathode are still major obstacles that hinder the broad market implementation of DMFCs. The slow kinetics are mainly caused by incomplete methanol oxidation accompanied by the formation of adsorbed carbonaceous reaction intermediates, which poison the Pt surface [14][15][16][17][18][19]. Most strategies
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Warped graphitic layers generated by oxidation of fullerene extraction residue and its oxygen reduction catalytic activity

  • Machiko Takigami,
  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1391–1400, doi:10.3762/bjnano.10.137

Graphical Abstract
  • cells; warped graphitic layers; Introduction Polymer electrolyte fuel cells (PEFCs) are used as the power supply for automobiles and stationary devices. Cost reduction, specifically the cost reduction of cathode catalysts, is imperative to apply PEFCs for practical use [1]. Increasing the specific
  • non-metal carbon-based cathode catalysts for PEFCs and illuminates interesting aspects of carbon materials. Comparison of transmission electron microscopy (TEM) images of prepared carbons. (a) Unmodified Nanom Black material (NB-ORG), the oxidized samples (b) ONB-1, (c) ONB-2 and (d) ONB-5, and (e
PDF
Album
Full Research Paper
Published 12 Jul 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • electron transfer process from the enzyme to the electrode interface [70]. Therefore, in a preliminary assay, Foam-GOx was tested in the presence of Fe(CN6)4− as mediator and separated from the cathode chamber by a Nafion® membrane. A power density of 565 µW·cm−3 and 31 µW·cm−2 was generated (Figure S11
  • [71]: The reaction occurring on the anode surface is: while the Pt cathode catalyses the reaction: Linear sweep voltammetry (LSV) experiments were carried out to evaluate the electrocatalytic properties of the bionanocomposite Foam-GOx as 3D bio-anode. Figure 5D displays the catalytic behaviour during
  • cathode surface. The presence of the acidic medium, in fact, can favour the proton migration from the anode to the cathode surface leading to an increase of the half-cell potential [70]. The power output of the EBC was different for the two pH values. Compared to pH 7 the cell working at pH 5.5 exhibits
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • promising technologies in the field of renewable energy (and especially for transport applications), but the cost and lifetime are factors still to be improved in order to achieve widespread dissemination of this technology [1][2]. Due to the sluggish reaction kinetics for the ORR, the cathode active layer
  • the performance and durability requirements for transport applications, a metal loading of 0.4 mgPt·cm−2 for the cathode side is commonly used, which explains the high cost of these systems [5]. One lever to reduce the cost of this technology is the reduction of the cathode Pt loading, but this must
  • could be leached during the ink preparation and then trapped by the ionomer. Based on the quantitative analysis of the catalyst composition, it can be calculated that for the unwashed Pt3Co/N-CNT, 1.5 µmol of Co2+ is released into the ink, for each square centimeter of prepared MEA. As the cathode
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • engines, as they are able to function as long as there is fuel, and for batteries, as they have similar characteristics under load conditions [1]. The performance of a fuel cell is mainly controlled by the oxygen reduction reaction (ORR) that takes place at the cathode [2], specifically by the
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell

  • Kumar Virwani,
  • Younes Ansari,
  • Khanh Nguyen,
  • Francisco José Alía Moreno-Ortiz,
  • Jangwoo Kim,
  • Maxwell J. Giammona,
  • Ho-Cheol Kim and
  • Young-Hye La

Beilstein J. Nanotechnol. 2019, 10, 930–940, doi:10.3762/bjnano.10.94

Graphical Abstract
  • design, fabrication, and successful performance of a sealed AFM cell operating in a controlled atmosphere. Documentation of reversible physical processes on the cathode surface was performed on the example of a highly reactive lithium–oxygen battery system at different water concentrations in the solvent
  • cathode while minimizing the chance of exposure to external sources of contaminants. The electrolyte consisted of lithium nitrate (LiNO3) as a salt in tetraethylene glycol dimethyl ether (TEGDME) solvent containing three concentrations of water: <20 ppm, ≈2500 ppm and ≈4600 ppm. Water has been added in
  • surrounding moisture and oxygen-free glove box, leading to erroneous interpretations of the data. By minimizing the water loss, our study allows for stable analysis of the vivid changes of the cathode surface for short (≈hours) and relatively long time (≈days) experiments. Results and Discussion In situ AFM
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • is composed of a sulfur cathode and a metallic Li anode, with an organic liquid electrolyte as the ionic conductor, and a porous separator. The Li–S batteries undergo the reaction of 16Li + S8 → 8Li2S, with a simplified reaction sequence of S8 → Li2S8 → Li2S6/Li2S4 → Li2S2/Li2S. Low coulombic
  • efficiency, active material loss, and rapid capacity fading hinder the practical application of Li–S batteries [6]. The insulating nature of sulfur and its lithiation products, Li2S2 and Li2S, leads to low electrical conductivity of the cathode and low rate capability. Dissolved higher-order lithium
  • greatly improved the performance of Li–S batteries [22]. MoS2 has been used as anchoring material for LPSs to enhance the performance of Li–S batteries, when it is embedded into a sulfur-rich matrix cathode [23]. However, density functional theory (DFT) calculations showed that the LPSs are weakly bound
PDF
Album
Full Research Paper
Published 26 Mar 2019

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • stainless steel tube and a carbon fiber as the anode and cathode under the action of a circular electric field, respectively, resulting in a cylindrical fibrous structure. The control over the electrodeposition voltage and time allowed for the fabrication of fibers with different thicknesses, and the
  • equal distances between sample and each cathode. Pore-enlarging treatment with phosphoric acid After anodization, the sample was put into a phosphoric acid solution (5%) and allowed to stand for 12 min, and then DI water was employed to remove the excess phosphoric acid solution, followed by blow-drying
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • ), a relevant lithium-ion battery cathode material. In this configuration the time resolution (and thus the fastest ionic conductor that can be measured) is limited by the time response of the PLL, which depends on many parameters including the free resonance frequency of the cantilever as well as the
PDF
Album
Supp Info
Review
Published 01 Mar 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • battery technologies. The actual application of Li–S batteries, however, is hindered by several challenges, i.e., i) the poor conductivity of sulfur and ii) the “shuttle effect” of polysulfides (Li2Sx, 4 < x ≤ 8) [1][2][3][4]. To achieve a high specific capacity, a sulfur cathode with high electrical
  • conductivity and high sulfur loading is necessary. The shuttle effect will result in rapid fading of the capacity and coulombic efficiency during the cycling process. Therefore, the development of a sulfur cathode that can “withhold” sulfur and reduce the shuttle effect, together with a high conductivity and
  • materials, however, have a major drawback, i.e., their electronic conductivity is very low [16][18]. To improve the conductivity of the sulfur cathode, it was typically composited with carbon materials [19][20][21][22][23]. Moreover, the high surface area of the carbon substrate was beneficial for a higher
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • %) electrolyte containing 0.27 M NH4F and 1 M H3PO4 described previously [31]. The anodization process was performed in a two-electrode cell using platinum mesh as the cathode. The distance between the electrodes was about 2 cm. The anodization voltage was kept at 40 V for 2 h. The as-prepared electrodes were
PDF
Album
Full Research Paper
Published 15 Feb 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • RF mode on the sample side of laser deposition (step (d) in Figure 5). Instrumental methods Scanning electron micrographs were obtained on a Zeiss Merlin field-emission SEM with a field-emission cathode and standard In-lens SE and SE2 detectors. All measurements were performed in the chamber with a
  • base pressure in the range of 10−7 mbar. The acceleration voltage was 10 to 1 keV with a beam current of 124–450 pA. Line averaging procedure was used for all images to reduce noise. Energy dispersive X-ray spectroscopy (EDX) was obtained on a JEOL JSM 6400 PC implemented with a LaB6 cathode and
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • system of NixCoyP/TNAs as the cathode and Pt sheet as the anode. A bath voltage of 1.71 V at a current density of 50 mA cm−2 is comparable to that of the NiCoP/foam nickel electrode [21]. It is noticeable that with increasing current density, the bath voltage does not rise in a linear pattern. A bath
  • /TNAs as the cathode, the bath voltage was only 1.07 V at hydrogen evolution current density of −10 mA cm−2, indicating superb electrocatalytic activity. The electrochemical stability of the electrode was proved via continuous cycling measurements. XRD patterns of the samples. Top-view FE-SEM images of
  • spectra of the samples. (a) Current–voltage characteristic plots and (b) Tafel plots of the samples. (c) Current–voltage characteristics during durability tests and (d) bath voltages at various current densities for the two-electrode system with NixCoyP/TNAs as a cathode. Cyclic voltammograms of (a) TNAs
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • JEM-2010, JEOL Ltd, Tokyo, Japan, JED 2300 series analyzer) was used to determine average size (AS) and the shape of the particles [33]. Hydroxyapatites were observed at an accelerating voltage of 100 kV with a LaB6 cathode. Samples were prepared by suspending a small quantity of nanopowder in ethanol
PDF
Album
Full Research Paper
Published 27 Dec 2018

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • ]. UV–vis absorption spectra of the dispersions were recorded on a Perkin Elmer Lambda 35 spectrometer. High-resolution transmission electron microscopy (TEM) was carried out on a JEOL JEM 3010 microscope operated at 300 kV (LaB6 cathode, point resolution 1.7 Å) with an Oxford Instruments Energy
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • electron beams from a thermionic cathode in the cathode ray tube pioneered by Braun in 1897 [1], followed by the first practical scanning transmission electron microscope (STEM) built in Berlin by von Ardenne in 1939 [2]. The first commercial SEM was built by Ruska’s team at Siemens in 1939 [3
PDF
Album
Review
Published 14 Nov 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • , temper hard) shaped to form a ring of 10 mm diameter, acting as the cathode. A micrometric translator is used to manipulate the gold wire during the immersion and extraction from the solution. The gold wire is placed at the center of the ring-shaped cathode (Figure 1c) and oriented orthogonal to the
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • promising Si/C composite is also studied in a LIB full cell vs a NMC-111 cathode; such a configuration is very seldom reported in the literature. More specifically, the influence of electrochemical prelithiation on the cycling performance in this full cell set-up is studied and compared to non-prelithiated
  • . For example, they maintain a high specific capacity (372 mAh g−1) compared to cathode materials, high electrochemical stability in suitable electrolytes, a low operation potential (0.2 V vs Li/Li+), low voltage hysteresis, low cost, and are environmentally friendly [7][8]. Nonetheless, alternative
  • Li/Li+). Therefore, high cell voltages can be achieved using appropriate cathode materials [10][12][14]. Based on energy density calculations, it was reported that the total specific capacity can significantly be increased on the cell level by the application of high capacity anode materials
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • MoOx forms a tunneling junction with the HTM is typical for organic solar cells in an n-i-p configuration. The cell area was 0.16 cm2. Layer and device characterization: The scanning electron microscope was a Zeiss (Leo) Gemini 1550 with Shottky field-emission cathode and an in-lens detector. The
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • vertically aligned nanostructuration of TiO2 also makes this system attractive, since it ensures direct percolation paths for the photogenerated electrons from the donor–acceptor interface to the cathode, while providing a simple, controlled and ordered architecture. Furthermore, studies are available in
  • bias, while fixing the growth temperature to 450 °C and the tilt angle between the substrate and the cathode axis to 60°. Anatase TiO2 layers with a 200 nm thick nanocolumnar morphology have been deposited on 85 nm-thick ITO-coated glass substrates (Naranjo B.V., sheet resistance of 15 Ω·sq). The
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • splitting of water to molecular hydrogen via hydrogen and oxygen evolution reaction (HER and OER, respectively) are fundamental working mechanisms at the cathode of fuel cells, metal–air batteries and dye-sensitized solar cells [2]. However, the current working catalysts are based on expensive metals, such
  • studies on the oxidation of oxalic acid on charcoal containing nitrogen and iron [7]. In 1966, activated carbon, heated at high temperatures in the presence of ammonia, was used in the cathode of a fuel cell showing an enhanced activity for the electrochemical reduction of oxygen [8]. However, a metal
  • introduction of nitrogen into various carbon-based cathode catalysts for the polymer electrolyte fuel cell (PEFC) [105]. Different preparation methods were used: nitrogen doping using ammonia resulted in high amounts of pyridinic N, while using pyrolysis of nitrogen-containing precursors the amount of
PDF
Album
Review
Published 18 Jul 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • ]. For EuF3, no oxygen peak was seen in the XPS analysis. Therefore, SAED and PXRD data in combination with HR-XPS exclude any contamination of the REF3-NPs with metal(III) oxides. Metal fluorides are used, for example, as cathode materials in lithium-ion batteries [6]. The lithium-ion battery is one of
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • from below through an underlying transparent conducting anode and substrate (FTO/glass). Local currents are detected from above by the AFM probe serving as a positionable cathode. The local photovoltaic properties can vary widely for the heterogeneous microstructure compared to the mean (macroscopic
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • displays, X-ray sources and cold-cathode electron sources [2]. 1D and 2D materials such as carbon nanotubes [3], ZnO nanorods [1], LaB6 nanowires [2], SnS2 nanosheets (NSs) [4], vertically aligned graphene [5], WS2 nanotubes [6], MoSe2 nanosheets [7], and MoS2 NSs [8][9][10] are potential field-emitter
  • deposited on the FTO glass substrate served as electron-emission cathode and another piece of conductive FTO glass was used as anode. The distance between the cathode and anode was fixed at 220 µm by using thin glass spacers. The FE current (I) versus the applied voltage (V) was measured using an
  • SEM (Figure 5c) and Raman spectroscopy (not shown as it is identical to the as-grown NSs). It was thus confirmed that they are of similar quality to that of as-grown NSs. The Fowler–Nordheim (F–N) equation [28] was modified for a cathode with nanometric field emitters as follows: E = U/d, where U is
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018
Other Beilstein-Institut Open Science Activities