Search results

Search for "chitosan" in Full Text gives 92 result(s) in Beilstein Journal of Nanotechnology.

Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes

  • Alfredo Nuñez-Rivera,
  • Pierrick G. J. Fournier,
  • Danna L. Arellano,
  • Ana G. Rodriguez-Hernandez,
  • Rafael Vazquez-Duhalt and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2020, 11, 372–382, doi:10.3762/bjnano.11.28

Graphical Abstract
  • viruses were incubated for 24 h with MDA-MB-231 cells, using 2.6 × 107 viruses per cell. A similar concentration has been used in cell viability tests with CCMV [25][39] and glycol chitosan nanoparticles [40]. The flow cytometry results showed around 90% cell survival after treatment with both viruses
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • –imidazole polyamide system was found to inhibit prostate cancer progression through interfering with the expression and function of the androgen receptor [13]. Chitosan–imidazole derivatives have been also explored for gene transfection in HEK293 cells [14]. In recent years, poly(vinylimidazole)-based
PDF
Album
Full Research Paper
Published 17 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • catalase and chitosan showed a stability change in response to the pH value. Between 7.4 in phosphate buffer (comparable to the cytoplasm environment) and pH 5.5 in acetate buffer (comparable to the lysosome environment) the diameter of nanoparticles decreased dramatically in the first 60 min [68]. The
  • reactive amine bonds. Not all of the lysine units should be modified to guarantee water solubility and enzymatic activation [83]. PEGylation could also improve solubility, but it was also proved to be detrimental regarding quenching [84]. More recently, polysaccharides based on chitosan or heparin have
  • negatively charged catalase or bovine serum albumin and positively charged chitosan or poly(allylamine)-coated MnO2 have been exploited to obtain pH-sensitive nanovectors [68][69]. The low concentration of endogenous H2O2 together with the instability of catalase in physiological environments containing
PDF
Album
Review
Published 15 Jan 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • 6EU London, United Kingdom 10.3762/bjnano.10.250 Abstract This study is about linking preparative processes of nanoparticles with the morphology of the nanoparticles and with their efficiency in delivering payloads intracellularly. The nanoparticles are composed of hyaluronic acid (HA) and chitosan
  • two-step process based on intermediate (template) particles produced via ionotropic gelation of chitosan with triphosphate (TPP), which are then incubated with HA, or B) through direct polyelectrolyte complexation of chitosan and HA. Here we demonstrate that HA is capable to quantitatively replace TPP
  • in the template process and significant aggregation takes place during the TPP–HA exchange. The templated chitosan/HA nanoparticles therefore have a mildly larger size (measured by dynamic light scattering alone or by field flow fractionation coupled to static or dynamic light scattering), and above
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • (ethylene oxide)-b-poly(acrylic acid) (PEO-b-PAA) and an oligo-chitosan-type polyamine was used as a structure-directing agent to prepare ordered mesoporous silica materials in the work “pH-mediated control over the mesostructure of ordered mesoporous materials templated by polyion complex micelles” [22
PDF
Editorial
Published 20 Dec 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • , multicomponent conductive nanoarchitectured materials integrating halloysite nanotubes (HNTs), graphene nanoplatelets (GNPs) and chitosan (CHI) have been developed. The resulting nanohybrid suspensions could be easily formed into films or foams, where each individual component plays a critical role in the
  • ]. Interestingly, HNTs are known to maintain their ability to act as nanocontainers even when dispersed in a multicomponent system included in polymer matrices [22]. It has been observed that positively charged polymers such as chitosan (CHI) can electrostatically incorporate the previously loaded halloysite
  • Figure 3A, while SEM images (Figure 3D,F) reveal that the components are uniformly distributed throughout the film and are organized as a compact particle assembly within the chitosan matrix. Furthermore, the film cross section (Figure 3F) displays the typical layered structure of films solvent-cast from
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • Abstract Maghemite (γ-Fe2O3) nanoparticles obtained through co-precipitation and oxidation were coated with heparin (Hep) to yield γ-Fe2O3@Hep, and subsequently with chitosan that was modified with different phenolic compounds, including gallic acid (CS-G), hydroquinone (CS-H), and phloroglucinol (CS-P
  • . In conclusion, the high cellular uptake and the antioxidant properties associated with the phenolic moieties in the modified particles allow for a potential application in biomedical areas. Keywords: antioxidants; chitosan; maghemite nanoparticles; oxidative stress; phenolic compound; Introduction
  • ][10][11]. To enhance the antioxidant properties of inorganic particles, they should be surface-modified with antioxidants or antioxidant-modified polymers. These types of polymers include chitosan, which is a product of chitin deacetylation and is composed of D-glucosamine and N-acetyl-D-glucosamine
PDF
Album
Full Research Paper
Published 20 May 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • -light irradiation. Results and Discussion Preparation and characterization of photocatalysts The preparation procedure of CdIn2S4/CCN photocatalysts is demonstrated in Figure 1. Firstly, carbon-bridged g-C3N4 (CCN) was prepared by a simple supramolecular self-assembly process using melamine and chitosan
  • deionized water with continuous stirring. Subsequently, 0.01 g of chitosan was dissolved in this solution. The resultant solution was stirred for 4 h at room temperature, and dried at 80 °C. Finally, the mixture was ground into powder and calcined at 550 °C for 4 h with a heating rate of 5 °C min−1 under
  • air atmosphere. After cooling down to room temperature naturally, the obtained g-C3N4 product (CCN) was collected. For comparison, pure g-C3N4 was also prepared following the same steps without chitosan, which was labeled as g-C3N4. The CdIn2S4/CCN composites were synthesized via a hydrothermal method
PDF
Album
Full Research Paper
Published 18 Apr 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • restricts its use for biomedical applications. Scientists have overcome this challenge through the oxidation of graphene by an improved Hummer’s method [3]. Graphene oxide (GO), due to its hydrophilic nature, can host a large number of biocompatible polymers, such as chitosan [4], polyethylene glycol (PEG
  • a chitosan 3D scaffold and enhanced its bioactivity, mechanical properties, and pore formation with GO for optimal bone tissue engineering [15]. Zhang et al. improved the chemotherapy efficacy of anticancer drugs with polyethyleneimine (PEI)-grafted GO [16]. Liu et al. discussed the antibacterial
PDF
Album
Full Research Paper
Published 18 Apr 2019

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • nicotinamide adenine dinucleotide hydride (NADH) [6][8][13][19]. The CNTs and mediator are co-deposited on the GCE using a polymer. Chitosan is often used as a cheap biodegradable biopolymer with good compatibility with CNTs for making adequate suspensions before deposition on the GCE [20]. The main problem
  • functionalization with Fc, was tested first. The electrode was prepared by dispersing the carbon material in a 0.5 wt % chitosan solution. A layer of this chitosan composite was deposited on the GCE and a second layer of chitosan containing diaphorase was additionally deposited on the top. The GCE was used as the
  • could have related the mode of oxidation (HNO3 or H2SO4) or the linker size for the ETGn spacer with the electrocatalytic response. The electrochemical response was most probably controlled by the availability of Fc on the surface, which mainly depended on the dispersion of the tubes in the chitosan
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • high molecular weight, such as silica, chitosan, poly(amino acids), poly(acrylic acid), hyaluronic acid, alginic acid, poly(vinyl alcohol), polyethylenimine, dextran, or poly(ethylene glycol) (PEG) [10][11][12]. The latter one is known to escape recognition by reticuloendothelial system prolonging thus
PDF
Album
Full Research Paper
Published 25 Sep 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • with 5-FU and resulted in enhanced cellular uptake and efficacy [18]. Furthermore, a chitosan/gold nanocomposite was employed as a load carrier for 5-FU with an encapsulation efficiency of 96% [19]. Interestingly, monomeric self-assembled nucleoside nanoparticles (SNNPs) loaded with 5-FU were shown to
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • -based alternatives for wastewater purification. These flocculants are expected to be degradable and prevent secondary pollution to the natural environment. Biopolymer-based flocculants such as chitosan, tannins, cellulose and alginate are attracting wide interest from many researchers. Bio-based
PDF
Album
Review
Published 19 Sep 2018

Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

  • Mingyang Liu,
  • Yanjun Chen,
  • Chaoran Qin,
  • Zheng Zhang,
  • Shuai Ma,
  • Xiuru Cai,
  • Xueqian Li and
  • Yifeng Wang

Beilstein J. Nanotechnol. 2018, 9, 1200–1210, doi:10.3762/bjnano.9.111

Graphical Abstract
  • ) with chitosan. In this method, a 2-hydroxypropyltrimethylammonium chloride-based chitosan-modified rGO material was prepared. This material disperses homogenously in the chitosan solution, forming a deposition solution with good dispersion stability. Subsequently, the modified rGO material was
  • deposited on an electrode through codeposition with chitosan, based on the coordination deposition method. After electrodeposition, the homogeneous, deposited rGO/chitosan films can be generated on copper or silver electrodes or substrates. The electrodeposition method allows for the convenient and
  • controlled creation of rGO/chitosan nanocomposite coatings and films of different shapes and thickness. It also introduces a new method of creating films, as they can be peeled completely from the electrodes. Moreover, this method allows for a rGO/chitosan film to be deposited directly onto an electrode
PDF
Album
Full Research Paper
Published 17 Apr 2018

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • natural compounds, such as chitosan and hyaluronic acid, or synthetic agents, such as polyHEMA and poly(vinyl alcohol) (PVA) [14][36]. PolyHEMA has been widely used to induce spheroid formation in cancer cells and cells from healthy tissue [37][38]. Notably, the cell morphology and even phenotype changes
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • [36] and drug delivery systems [37]. For tissue regeneration, the mostly studied biomaterials are collagen and chitin, which are, respectively, protein-based and glucose-based biopolymers [38][39]. When denatured, collagen and chitin can be transformed into gelatin and chitosan, respectively, which
  • cholesteric droplets of concentrated suspensions of α-chitin and chitosan have been reported [45], and nematic order was also confirmed in the solutions of collagen type IV [46]. Similarly, the cholesteric phase behavior of cellulose fibrils is well established. For all these cases, the isotropic–nematic
PDF
Album
Review
Published 18 Jan 2018

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • environmental applications [12][13]. Carbohydrates such as chitosan [14][15], alginate [16], and agarose [7][17] hydrogels have also been used to incorporate CNDs. Only a very few studies have incorporated CNDs into supramolecular hydrogels obtained from low-molecular-weight gelators (LMWGs). Relative to
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite

  • Peter Sobolewski,
  • Agata Goszczyńska,
  • Małgorzata Aleksandrzak,
  • Karolina Urbaś,
  • Joanna Derkowska,
  • Agnieszka Bartoszewska,
  • Jacek Podolski,
  • Ewa Mijowska and
  • Mirosława El Fray

Beilstein J. Nanotechnol. 2017, 8, 1508–1514, doi:10.3762/bjnano.8.151

Graphical Abstract
  • , Szczecin, Poland 10.3762/bjnano.8.151 Abstract We present an ink platform for a printable polymer–graphene nanocomposite that is intended for the development of modular biosensors. The ink consists of catechol-modified chitosan and reduced graphene oxide decorated with platinum nanoparticles (rGO–Pt). We
  • modified the chitosan with catechol groups, in order to obtain adhesive properties and improve solubility. Dispersions of rGO–Pt in ethylene glycol were admixed with an aqueous solution of modified chitosan to yield an ink that is suitable for non-contact piezoelectric printing using a commercial
  • polymerase chain reaction (PCR) products and low non-specific binding. Our results demonstrate that catechol-modified chitosan/rGO–Pt nanocomposites can be used as inks for piezoelectric printing and facilitate the attachment of biorecognition elements for biosensor applications. Keywords: biosensing
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2017

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

  • Gamze Varan,
  • Juan M. Benito,
  • Carmen Ortiz Mellet and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1457–1468, doi:10.3762/bjnano.8.145

Graphical Abstract
  • addition, chitosan (Figure 1c) was used to coat the surface of the 6OCaproβCD nanoparticles. Chitosan-coated 6OCaproβCD nanoparticles (CS-6OCaproβCD) were also prepared and characterized. It was aimed to increase the efficacy of PCX (Figure 1d) as a model drug. All blank amphiphilic CD nanoparticles were
  • nanoparticles, and acetone > methanol > ethanol for PC βCDC6 nanoparticles. It is worth noting that ethanol also gave the most monodisperse particles with an acceptable polydispersity index (<0.2) (Table 1). As expected, the core–shell nanoparticles CS-6OCaproβCD had the largest size due to the chitosan coating
  • on the surface of nanoparticles. This drug on the surface of the nanoparticles changes the particle size. For CS-coated nanoparticles, the drug and cyclodextrin were dissolved in the organic phase and then added to the CS-containing water. The presence of chitosan in the aqueous phase may cause a
PDF
Album
Full Research Paper
Published 13 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • treat brain tumors and prevent tumor recurrence. The aim of this study was to develop core–shell polymeric nanoparticles with positive charge by employing a chitosan coating. Additionally, an implantable formulation for the chemotherapeutic nanoparticles was developed as a bioadhesive film to be applied
  • at the tumor site following surgical operation for brain glioma treatment. To obtain positively charged, implantable nanoparticles, the effects of preparation technique, chitosan coating concentration and presence of surfactants were evaluated to obtain optimal nanoparticles with a diameter of less
  • nanoparticles were in the range of 70–270 nm, depending on the preparation technique, polymer type and coating. Moreover, the chitosan coating significantly altered the surface charge of the nanoparticles to net positive values of +30 to +50 mV. The model drug docetaxel was successfully loaded into all
PDF
Album
Full Research Paper
Published 12 Jul 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • cells, rather than Caco-2 barriers, interestingly, there are suggestions that the response is different in overnight cultures and cells grown for 10 days [25]. Uptake into Caco-2 cells has been reported for silica [23][24][26][28], polystyrene [29], chitosan [30], poly(lactic-co-glycolic acid) [31][32
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a

  • Maryam Daneshpour,
  • Kobra Omidfar and
  • Hossein Ghanbarian

Beilstein J. Nanotechnol. 2016, 7, 2023–2036, doi:10.3762/bjnano.7.193

Graphical Abstract
  • , which can be considered for differentiating TMC from chitosan. The second spectrum is obtained from naked Fe3O4 NPs and included a strong peak at about 585 cm−1, which correlates to Fe–O. This peak can be also observed in FTIR spectra obtained from TMC@Fe3O4, and gold@TMC@Fe3O4 NPs (curve c and d
  • , ferric chloride hexahydrate (FeCl3·6H2O), ferrous chloride tetrahydrate (FeCl2·4H2O), and acetic acid were obtained from Acros Organics (USA). Chloroauric acid (HAuCl4), BSA, sodium dodecyl sulfate (SDS), low molecular weight chitosan, dialysis tube with molecular cut off 12000 Da, sodium azide, KCl, 1
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2016

Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

  • Huijuan Zhang,
  • Fuqiang Wu,
  • Yazhen Li,
  • Xiping Yang,
  • Jiamei Huang,
  • Tingting Lv,
  • Yingying Zhang,
  • Jianzhong Chen,
  • Haijun Chen,
  • Yu Gao,
  • Guannan Liu and
  • Lee Jia

Beilstein J. Nanotechnol. 2016, 7, 1861–1870, doi:10.3762/bjnano.7.178

Graphical Abstract
  • mechanism of action. However, application of MIF is limited by its poor water solubility and low oral bioavailability. In this work, we developed a drug delivery system based on chitosan nanoparticles (CNs) to improve its bioavailability and anticancer activity. The MIF-loaded chitosan nanoparticles (MCNs
  • ) were prepared by convenient ionic gelation techniques between chitosan (Cs) and tripolyphosphate (TPP). The preparation conditions, including Cs concentration, TPP concentration, Cs/MIF mass ratio, and pH value of the TPP solution, were optimized to gain better encapsulation efficiency (EE) and drug
  • curve from 0 to 24 h compared with free MIF. These results demonstrated that MCNs could be developed as a potential delivery system for MIF to improve its anticancer activity and bioavailability. Keywords: anticancer; chitosan; drug delivery; mifepristone; nanoparticles; pharmacokinetics; sustained
PDF
Album
Full Research Paper
Published 28 Nov 2016

Development of adsorptive membranes by confinement of activated biochar into electrospun nanofibers

  • Mehrdad Taheran,
  • Mitra Naghdi,
  • Satinder K. Brar,
  • Emile Knystautas,
  • Mausam Verma,
  • Rao. Y. Surampalli and
  • Jose. R. Valero

Beilstein J. Nanotechnol. 2016, 7, 1556–1563, doi:10.3762/bjnano.7.149

Graphical Abstract
  • atrazine from water [10]. Kampalanonwat and Supaphol and also Neghlani et al. used aminated polyacrylonitrile (PAN) nanofibers to remove heavy metals from water and achieved up to 150 mg/g adsorption capacity for copper [11][12]. Haider and Park fabricated chitosan nanofibers to take advantage of its
  • affinity towards metallic ions, such as copper and lead [13]. In a similar study, Aliabadi et al. used PEO/Chitosan for NFM fabrication to remove nickel, cadmium, lead and copper from aqueous solutions and reported no considerable change in the adsorption capacity after five cycles [14]. Also, there are
PDF
Album
Full Research Paper
Published 01 Nov 2016

Preparation of alginate–chitosan–cyclodextrin micro- and nanoparticles loaded with anti-tuberculosis compounds

  • Albert Ivancic,
  • Fliur Macaev,
  • Fatma Aksakal,
  • Veaceslav Boldescu,
  • Serghei Pogrebnoi and
  • Gheorghe Duca

Beilstein J. Nanotechnol. 2016, 7, 1208–1218, doi:10.3762/bjnano.7.112

Graphical Abstract
  • , 41400, Turkey 10.3762/bjnano.7.112 Abstract This paper describes the synthesis and application of alginate–chitosan–cyclodextrin micro- and nanoparticulate systems loaded with isoniazid (INH) and isoconazole nitrate (ISN) as antimycobacterial compounds. Preparation and morphology of the obtained
  • density distribution. It has been detected that alginate–chitosan–cyclodextrin microparticulate systems loaded with INH and ISN are as effective as pure INH applied in higher dosages. Keywords: chitosan; β-cyclodextrin; density functional theory (DFT); isoconazole; isoniazid; molecular docking
  • active site of InhA and isoconazole in order to discuss these interactions with the frontier molecular orbital (FMO) analysis of the electron density distribution. The main carriers used in our particles are β-cyclodextrin, sodium alginate, and chitosan. β-Cyclodextrin (β-CD), a cyclic oligosaccharide
PDF
Album
Full Research Paper
Published 24 Aug 2016
Other Beilstein-Institut Open Science Activities