Search results

Search for "drug" in Full Text gives 424 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • cancer treatment, the goal being to increase the fraction of injected drug delivered to the tumor and thereby improve the therapeutic effect and decrease side effects. Thus, we discuss how NPs are delivered to tumors and some challenges related to investigations of biodistribution, pharmacokinetics, and
  • intravenous (i.v.) injection is required to benefit from NPs as therapeutics or imaging agents in an optimal way. Many different types of NPs have been made; for an overview, see [1]. Doxorubicin encapsulated in liposomes (Doxil®/Caelyx®) was the first NP-based drug approved for cancer treatment by the US
  • Food and Drug Administration (FDA) in 1995 [2]; this product has a similar therapeutic effect and less side effects than those obtained with the free drug. Later on, also other NPs have been approved for clinical use [1], but there is still a large need for new products. In addition to the development
PDF
Album
Perspective
Published 12 Aug 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • Computing Facility of The Cyprus Institute under project ID pro21a114s2 “EnalosHPC: Enabling efficient in silico drug design through HPC capabilities”. Funding This work received funding from the European Union’s Horizon 2020 research and innovation programme via SABYDOMA Project under grant agreement
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • therapeutic and diagnostic capabilities, have gained significant interest in drug research because of to their potential advantages. This study reports the development of a novel multifunctional nanoparticle carrier system based on poly(ᴅ,ʟ-lactic-co-glycolic acid) (PLGA) for the targeted delivery of the
  • and diagnosis, leveraging the advantages of PLGA, folate targeting, and the integration of therapeutic and imaging agents. Keywords: cancer; chlorambucil; drug carrier; IR780; PLGA nanoparticle; theragnostic; Introduction Poly(ᴅ,ʟ-lactic-co-glycolic acid) (PLGA), a copolymer of poly(lactic acid
  • folic acid to enhance the imaging contrast in magnetic resonance imaging (MRI) or to improve the therapeutic efficacy of nanoparticles [14]. Chlorambucil (CHL) is a nitrogen mustard alkylating drug used to treat several benign tumors and malignancies, including chronic lymphatic leukemia [15], Hodgkin’s
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • regeneration and give an insight about bone regeneration, production techniques of the electrospun nanofibers, and varying formulation parameters in order to reach different drug delivery goals. This review also provides an extensive market research of electrospun nanofibers and an overview on scientific
  • research and patents in the field. Keywords: bone regeneration; controlled release; drug delivery; electrospinning; nanofibers; Introduction The nanofiber technology is a recent technology developed for producing implantable systems that can be used for structural support to the bones as well as drug
  • , antibiotics, anticancer agents, proteins, DNA, RNA, and growth factors for tissue regeneration [6][7][8]. In addition, nanofibers as drug delivery systems provide rapid or delayed and controlled release of pharmaceuticals. Apart from being implantable drug delivery systems, nanofiber scaffolds can contribute
PDF
Album
Review
Published 25 Jul 2024

Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification

  • Indrasis Dasgupta,
  • Totan Das,
  • Biplab Das and
  • Shovanlal Gayen

Beilstein J. Nanotechnol. 2024, 15, 909–924, doi:10.3762/bjnano.15.75

Graphical Abstract
  • Indrasis Dasgupta Totan Das Biplab Das Shovanlal Gayen Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India 10.3762/bjnano.15.75 Abstract Nanoparticles (NPs) are considered as versatile tools in various fields including
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2024

When nanomedicines meet tropical diseases

  • Eder Lilia Romero,
  • Katrien Van Bocxlaer and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 830–832, doi:10.3762/bjnano.15.69

Graphical Abstract
  • ]. Potentially beneficial properties of nanomedicines include enhanced drug solubility, improved bioavailability, targeted drug delivery, longer half-life, and reduced toxicity. This thematic issue covers pre-clinical research employing chemotherapeutic or prophylactic nanomedicines against NTDs in a concise
PDF
Editorial
Published 08 Jul 2024

Synthesis of silver–palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study

  • Maria J. Martínez-Carreón,
  • Francisco Solís-Pomar,
  • Abel Fundora,
  • Claudio D. Gutiérrez-Lazos,
  • Sergio Mejía-Rosales,
  • Hector N. Fernández-Escamilla,
  • Jonathan Guerrero-Sánchez,
  • Manuel F. Meléndrez and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2024, 15, 808–816, doi:10.3762/bjnano.15.67

Graphical Abstract
  • not have. For instance, the distinct sides of Janus nanoparticles can be functionalized with different surface chemistries, allowing for controlled interactions with different molecules, surfaces, or biological entities; this feature may be particularly useful in applications as diverse as drug
PDF
Album
Full Research Paper
Published 04 Jul 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • )/hydroxyapatite in orthopedics [1][2]. Biocompatible polymers are widely used in biomedical fields, such as stents, drug delivery systems in cancer therapy, bone repair, dentistry, joint prostheses, and tissue engineering [2][3][4][5][6]. Polymers have several advantageous properties for these applications as
  • created and used in numerous biomedical applications, such as tissue engineering, wound dressing, and drug delivery [11][12]. Electrospinning has many advantages: it is a simple technique, cost-effective, reproducible, scalable, and reliable. In addition, various polymers can be used as starting material
  • ). Similarly, Tóth et al. saw that drug loading decreased the specific maximum load capacity of the PSI polymer [35]. Pázmány et al. also investigated a scaffold with 25% (w/w) PSI content, and they measured a lower specific maximum load capacity (0.08 ± 0.01 N·m2/g) compared to that of our results at the same
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • of CQDs range from sensing and cell imaging to drug delivery, photocatalysis, and energy conversion [26][27][28][29]. In this study, biomass from watermelon shell and grape pomace waste is used as the carbon source. The hydrothermal method employing urea, nitric acid, and water is utilized. Samples
  • properties for advanced photocatalytic applications. Furthermore, the assessment of luminescence activity unveiled the potential of CQDs for biomedical imaging, particularly with upconversion luminescence. This presents opportunities for targeted cell identification and drug delivery. This study underscores
PDF
Album
Full Research Paper
Published 25 Jun 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • Nabojit Das Vikas Akash Kumar Sanjeev Soni Raja Gopal Rayavarapu Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy

  • Yanyan Wen,
  • Ningning Song,
  • Yueyou Peng,
  • Weiwei Wu,
  • Qixiong Lin,
  • Minjie Cui,
  • Rongrong Li,
  • Qiufeng Yu,
  • Sixue Wu,
  • Yongkang Liang,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2024, 15, 569–579, doi:10.3762/bjnano.15.49

Graphical Abstract
  • leading cause of cancer death worldwide. Most patients are diagnosed at an advanced stage, and systemic chemotherapy is the preferred treatment modality for advanced HCC. Curcumin (CUR) is a polyphenolic antineoplastic drug with low toxicity obtained from plants. However, its low bioavailability and poor
  • significant side effects such as hypertension, proteinuria, and skin toxicity [7][8]. Hence, there is a pressing need to develop new therapeutic modalities that offer substantial efficacy while minimizing side effects. Extensive efforts have been dedicated to drug development and delivery technologies in
  • pursuit of enhanced therapeutic effects and reduced side effects [9]. Among these, curcumin (CUR), a natural plant-derived polyphenolic drug, has garnered considerable attention due to its potential in treating HCC [10][11][12][13]. Curcumin can promote HCC cell apoptosis by activating p38, a cancer
PDF
Album
Full Research Paper
Published 22 May 2024

On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems

  • Shan He,
  • Julen Segura Abarrategi,
  • Harbil Bediaga,
  • Sonia Arrasate and
  • Humberto González-Díaz

Beilstein J. Nanotechnol. 2024, 15, 535–555, doi:10.3762/bjnano.15.47

Graphical Abstract
  • diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood–brain barrier. Therefore, the development of new neurodegenerative disease
  • drugs (NDDs) requires immediate attention. Nanoparticle (NP) systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparticle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP
  • serve as valuable tools in the design of drug delivery systems for neurosciences. Keywords: artificial neural network (ANN); linear discriminant analysis (LDA); machine learning; nanoparticle; neurodegenerative diseases; Introduction Over time, there has been a significant shift in global dietary
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent

  • Horacio Emanuel Jerez,
  • Yamila Roxana Simioni,
  • Kajal Ghosal,
  • Maria Jose Morilla and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 517–534, doi:10.3762/bjnano.15.46

Graphical Abstract
  • interest in the drug delivery field [27][28]. Nanoarchaeosomes (nanoARC) prepared with lipids extracted from H. tebenquichense, for example, are naturally targeted to scavenger receptor A I/II (SRAI/II) expressed by phagocytic cells and certain endothelial cells and outperform liposomes in structural
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • pollutants from the atmosphere and from water, in other catalytic processes, including photocatalytic water splitting, in energy production and storage, in microfluidic systems, in drug delivery and other biomedical applications, in sensing, in electronic, photoelectronic, optoelectronic and nanophotonic
PDF
Album
Full Research Paper
Published 02 May 2024

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • showed good performance in the Franz diffusion test and rodent pharmacokinetic studies due to the nanoparticle size and faster dissolution as compared with the commercial DCS powder. These DCS nanocrystal formulations could offer a new approach for the development of an advanced drug delivery system for
  • the treatment of CNS disorders. Keywords: ᴅ-cycloserine; drug delivery system; enteric capsules; N-methyl-ᴅ-aspartate; nanocrystals; NMDA receptor agonist; transdermal reservoir; Introduction Tuberculosis (TB) is a prevalent respiratory disease caused by Mycobacterium tuberculosis. According to the
  • studied over the last three decades, primarily due to its centrally active partial agonism of N-methyl-ᴅ-aspartate (NMDA) receptor [3][4][5][6][7][8][9][10][11][12]. Several researches indicated that DCS is a potential drug candidate to treat CNS disorders such as depression, schizophrenia, Alzheimer's
PDF
Album
Full Research Paper
Published 25 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • atherosclerotic plaques [171]. One promising avenue involves the development of metal-based NPs for targeted drug delivery to atherosclerotic lesions. These NPs, often composed of biocompatible metals such as gold, silver, or iron, offer unique properties that enable precise drug delivery to affected areas while
  • a bioresorbable magnesium alloy stent coated with an anti-proliferative drug, offering a dual benefit of mechanical support and localized drug release, leading to improved outcomes in atherosclerosis treatment [173][174]. Besides, since zinc has emerged as a promising candidate because of its anti
  • et al. demonstrated that biodegradable Mg scaffolds have shown promise in promoting vascular regeneration [188]. In brief, the use of metal-based nanomaterials in CVD treatment encompasses a range of innovative approaches from targeted drug delivery using NPs to the development of advanced metallic
PDF
Album
Review
Published 12 Apr 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • Food and Drug Administration in 2018. Since the early 70s, patients received the same BNZ-based treatment, which is long, toxic to adults, effective in recently infected people, and controversially effective in the chronic phase [12]. A recommended course of 5–10 mg BNZ/kg orally, is divided into two
  • idiosyncratic adverse drug reactions (ADRs), caused by BNZ reduction products, which are maximal in adults and lead to treatment discontinuation [19]. Typical ADRs include headache, anorexia, weakness and/or lack of energy, skin rash, gastrointestinal complaints, and mild, peripheral neurological effects [20
  • therapeutic response, were detected [22]. This finding led to the assumption that in adults the BNZ treatment could be overdosed. Unlike adults, children show few ADRs; therefore, the existence of a potential direct correlation between drug concentration and the incidence of ADRs was suggested. Data from
PDF
Album
Review
Published 27 Mar 2024
Graphical Abstract
  • Joyita Roy Kunal Roy Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India 10.3762/bjnano.15.27 Abstract A comprehensive knowledge of the physical and chemical properties of nanomaterials (NMs) is necessary to design
  • = 0.54) showing the stability and predictive ability of the model. Utilization of the metal oxide cell damage knowledge for cancer treatment NPs have shown immense potential in treating various diseases owing to their small size and high surface-to-volume ratio, which makes them effective drug delivery
  • affect the pH value of the cell and increase the catalytic properties of metal oxides, thereby increasing ROS generation. Tumor cells have a mechanism for dealing with hypoxia, acidosis, and high glutathione (GSH) levels, which promote drug resistance, especially for ROS-dependent drugs (Figure 5
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • cancer therapy agent, is included in the nanocomposite structure, and in vitro drug release studies under different pH conditions (pH 5.5 and 7.4) and photothermal activity at 808 nm NIR laser irradiation are investigated. The comprehensive integration of precise multifunctional nanoparticles design
  • , magnetic response, and controlled drug release with photothermal effect brings a different perspective to advanced cancer treatment research. Keywords: drug efficacy; iron oxide nanoparticles; photothermal; solvothermal method; Introduction Cancer is a widespread condition characterized by the
  • drug delivery systems to formulate more effective cancer treatments, thereby addressing the current limitations encountered within this field of study. Functional nanostructures have been designed to mitigate potential harm to healthy tissue caused by these techniques [6]. Additionally, they facilitate
PDF
Album
Full Research Paper
Published 28 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • DNA origami nanostructures is rarely explored, yet promising applications are foreseen to require such information. DNA nanostructures have been explored as drug delivery vessels for chemotherapeutics [1][2]. With the constant pursuit of effective targeting strategies [3], they could eventually be
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • delivery system. The delivery system is comprised of three components: the carrier, the imaging agent, and the therapeutic drug, all of which need clinical approval before being used in humans. Poly(lactic-co-glycolic acid) (PLGA) is an approved biodegradable and biocompatible material for clinical use [1
  • tumor treatment [27], and PLGA-chlorambucil nanoparticles have been developed for the treatment of breast cancer [28]. Due to the efficiency of CHL in cancer treatment, CHL has been used as a drug model in order to evaluate our formulated NPs. Therefore, in this study, we propose to develop a carrier
  • HPLC 1200 and NanoDrop OneC (Thermoscientific, USA). In brief, a small amount of freeze-dried NPs was weighted and dissolved in 20 μL of acetonitrile. Then, 80 μL of methanol was added to extract the drug. The mixture was centrifuged at 12,000 rpm for 30 min, and the supernatant was kept for drug
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • ; drug delivery system; hydrophile–lipophile balance; monoterpenes; Introduction Aedes aegypti (Linnaeus, 1762) is a mosquito species that is cosmopolitan and well adapted to anthropized and peridomestic environments. It is an important vector of arboviruses, including dengue, chikungunya fever, zika
  • were observed with cryo-TEM [39]. This technique is widely used to characterize the morphology of nanoemulsions and faithfully confirms the results obtained with other techniques [40]. In vitro drug release One potential advantage of using NEs is their ability to enhance drug solubility and
  • bioavailability. NEs have been shown to increase the solubility of poorly soluble drugs, such as monoterpenes, which can improve drug delivery and efficacy. The cumulative release of both free terpenes was lower than the cumulative release of nanoemulsions (Figure 2). The observed differences in the release of
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • cytotoxicity test revealed that the BBR NPs/PLA nanofiber scaffold did not induce any changes in morphology and proliferation of MA-104 cell monolayers. It suggests that the BBR/PLA and BBR NPs/PLA nanofiber scaffolds can be used in different biomedical applications, such as wound dressing, drug delivery
  • systems, and tissue engineering, according to the requirement of BBR concentration for the desired therapeutic effects. Keywords: antibacterial activity; berberine; drug-release system; electrospun nanofiber; polylactic acid; Introduction Medicinal plants have various biologically active compounds, such
  • been employed to produce nanoformulations of drugs for endowing a better therapeutic effect. The nanoformulations for drug delivery can be designed using nanocarrier systems, including organic materials (liposomes, nanoemulsions, nanomicelles, and nanofibers) and inorganic nanoparticles (gold, silver
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • , such as environmental engineering [32], renewable energy [22][33][34][35], electronics [36][37][38], medical devices [39][40][41], and drug delivery systems [42][43][44][45]. They combine the properties of a hydrophilic matrix with conductive properties obtained thanks to the use of an appropriate
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1–1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded
  • cause systemic infection affecting the liver, spleen, hematogenous and lymphatic systems [5][6]. For the treatment of these infections, therapies based on pentavalent antimony (first-line drug treatment), amphotericin B, miltefosine, and paromomycin have been employed [7]. Despite being effective, these
  • drugs cause cardiotoxicity, renal, pancreatic, and liver toxicity, and teratogenicity. Furthermore, cases of drug resistance are already well reported for antileishmanial drugs, such as the pentavalent antimonial salts [8]. Therefore, finding new therapeutic alternatives for this neglected tropical
PDF
Album
Review
Published 04 Jan 2024
Other Beilstein-Institut Open Science Activities