Search results

Search for "friction" in Full Text gives 188 result(s) in Beilstein Journal of Nanotechnology.

Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy

  • Cameron H. Parvini,
  • M. A. S. R. Saadi and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 922–937, doi:10.3762/bjnano.11.77

Graphical Abstract
  • fluids) will have a low storage modulus and high loss modulus. In this case, most of that input energy will be lost to friction and heat, and therefore the material will return far less energy than the stiff elastic material when unloaded. To acquire storage and loss modulus as functions of the frequency
PDF
Album
Supp Info
Correction
Full Research Paper
Published 16 Jun 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • . It also determines interfacial properties, such as adhesion and friction, and is a key input into mechanics models and atomistic simulations of contacts. We have developed a novel methodology to experimentally determine interaction potential parameters, given a particular potential form, using
  • microscopy (AFM) [4][5], and nanolithography techniques [6]. In particular, material parameters, such as interfacial adhesion, friction and wear (in the case of translating surfaces), significantly impact the success of the aforementioned examples. For instance, micromirrors, present in DLP technology
  • such issues. For example, the adsorption of self-assembled monolayers on contacting surfaces is one method by which the surface can be modified to reduce the detrimental impacts of adhesion, friction and wear [15][16][17]. The nanometer length scales over which these processes modify surface
PDF
Album
Full Research Paper
Published 06 May 2020

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • deflection signal from the photodiodes of the AFM equipment. The classical Euler–Bernoulli beam equation is used, which is expressed by Vázquez et al. as [27][28][29]: where EI is the flexural stiffness, c is the damping due to viscous friction, m is the mass per unit length and z(x,t) is the deflection of
PDF
Album
Full Research Paper
Published 04 May 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • the new 3D flow channels. pHEMA hydrogels synthesized with 1, 1.1, and 1.2 mL of DI water showed uneven surface textures owing to the increased softness of these materials. These formulations were not used for the flow channels as their rough surfaces could lead to friction artifacts in the flow of
  • showed the smoothest surface of all gel formulations. The gels prepared with 1.5 mL DI water showed a distinctly porous surface structure. Therefore, the 1.3 mL DI water hydrogels were most suitable for making flow channels of negligible friction to resemble the vascular microenvironment. The hollow 3D
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • –Grenoble (LuGre) theories for frictional models [9]. Hou et al. studied the behavior of cylindrical nanoparticle motion during the manipulation process. They considered the viscous friction and studied two states: turning the axis inside or outside of the nanoparticle [10]. Kahrobaiyan et al. investigated
  • used for biological nanoparticles [13]. Using MSCT for modeling AFM with a piezoelectric system was considered in another study [14]. Polyakov et al. examined the dependence of static friction and contact area on nanoparticle geometry in the manipulation of spherical silver and polyhedral gold
  • critical time and force of the dominant motion mode are used as the inputs of next steps. After applying the exerted force on the nanoparticle by AFM and distributed resistant force resulting from friction and adhesion, deflections of the cylindrical nanoparticle before the onset of motion in the dominant
PDF
Album
Full Research Paper
Published 13 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • should decrease the contact area compared to faceted particles, and hence reduce the friction forces in accordance with the known relation τ = F/A [6], where τ is the contact strength, F is the friction force and A is the contact area. For a round particle, the contact area is determined by contact
  • power for a displacement than the experimental setup could provide. Therefore, the actual average friction determined for the NPs annealed at 200 °C is even higher. The power required to displace NPs is the highest for particles annealed at 200 °C and the lowest for NPs annealed at 600 °C. This finding
  • from the ellipsometry measurements presented in Figure 7. How exactly the rapid growth of the SiO2 layer may be related to the drastic increase in friction remains unclear and can be the subject for future studies. Overall, we demonstrated that heat treatment, which is widely used as a surfactant
PDF
Album
Full Research Paper
Published 06 Jan 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • transportation, the transport drag originates from skin friction drag, which is the main reason affecting the transport efficiency of long-distance pipelines [2][3]. In drilling engineering, the high pressure loss often encountered is mainly caused by a skin friction drag of the circulating drilling fluid, which
  • severely hinders the exploration of oil and gas resources in deep wells [4][5][6]; therefore, it is necessary to put additional effort into reducing the skin friction drag. Conventional hydraulic drag reduction methods include the development of high-performance polymer additives to reduce fluid viscosity
  • the direct numerical simulation (DNS) results, as shown in Figure 5. The agreement with DNS was satisfactory so that the accuracy of the numerical simulation method could be validated again. Dimensionless parameters: where uτ was the friction velocity (m/s); U was the instantaneous velocity (m/s); y
PDF
Album
Full Research Paper
Published 03 Jan 2020

Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields

  • Nikolai A. Usov,
  • Ruslan A. Rytov and
  • Vasiliy A. Bautin

Beilstein J. Nanotechnol. 2019, 10, 2294–2303, doi:10.3762/bjnano.10.221

Graphical Abstract
  • ][53][54] where γ1 = |γ|/(1 + κ2), κ is the phenomenological damping parameter, and is the random thermal magnetic field that causes thermal fluctuations of the particle magnetic moment. The stochastic equation for the nanoparticle director is given by [25][54][55] where ξ = 6ηV is the friction
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • have been several studies, particularly in the field of tribology, that have attributed observations or proposed mechanisms of friction that result from a weaker elastic constant at an atomic step edge [21][24][25]. Despite the number of proposed mechanisms relying on weakened graphite step edges
  • made about HOPG and graphene step edges to interpret friction and AFM tip-convolution measurements made previously. In this paper, CR AFM is used to clearly identify atomic-scale defects, such as atomic step edges, that show mechanical property variations on surfaces of HOPG. FMM is then used to scan
  • uncovered step appears sharper than the covered step, this contrast difference is not as reliable as the smaller measured lateral and friction forces on the covered steps compared with the uncovered steps, as reported in [39]. Figure 3c shows the line profile extracted along the dashed line in Figure 3b for
PDF
Album
Full Research Paper
Published 03 Jul 2019

Biological and biomimetic surfaces: adhesion, friction and wetting phenomena

  • Stanislav N. Gorb,
  • Kerstin Koch and
  • Lars Heepe

Beilstein J. Nanotechnol. 2019, 10, 481–482, doi:10.3762/bjnano.10.48

Graphical Abstract
  • Keywords: adhesion; air retention; contact mechanics; fluid transport; friction; functional gradients; wetting; This Thematic Series is the continuation of the previous series on the broad topic of biological and bioinspired materials and surfaces [1][2][3]. This collection of articles displays a current
  • cross section of recent developments in this highly diverse and interdisciplinary field of research. The articles highlight recent achievements in the understanding of animal and plant surfaces in the broadest context of adhesion, friction, and wetting phenomena on one hand. On the other hand, they
  • novel flow and pressure sensors. While most of the articles represent experimental work, two are devoted to theoretical and numerical work on the adhesion of rough brush systems and the friction of functionally graded materials. The metrics mentioned above illustrate that this compilation of articles
PDF
Editorial
Published 15 Feb 2019

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • growth observable at the breaking line. Nanorods growing around the breaking line might originate from anatase nanoparticles released during the breaking process. Besides surface roughening, charging is another candidate that could promote the growth on scratched regions. The tip causes a lot of friction
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • pull-off and friction forces, such as defect control and crack trapping, as reported in the literature for hard substrates, seem to disappear on soft substrates. The dimple geometry with a terminal layer generated significantly higher pull-off forces compared to other geometries, presumably due to
  • interlocking of the soft substrate into the holes of the terminal layer. Pull-off from soft substrates increased with the substrate stiffness for all tested geometries. Friction forces on soft substrates were the highest for microscale dimples without a terminal layer, likely due to interlocking of the soft
  • substrate between the dimples. Keywords: adhesion; biomimetic micropatterned adhesive; colloidal lithography; friction; pull-off; soft substrate; Introduction Pull-off and friction forces of micropatterned adhesives as a function of geometry, feature size, and stiffness Over the last few decades
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • , Hauptstr.1, 79104 Freiburg, Germany 10.3762/bjnano.10.5 Abstract Our aim was to compare friction and traction forces between two burying beetle species of the genus Nicrophorus exhibiting different attachment abilities during climbing. Specifically, the interaction of adhesive hairs and claws during
  • fore tarsi performed on micro-rough and rough surfaces revealed higher friction in the proximal (pull) direction compared with the distal (push) direction. In these experiments, we detected neither differences in friction performance between the two species, nor clear trends concerning the influence of
  • . Our results suggest that even subtle differences in the adhesion-mediating secretion in closely related species might result in qualitative performance shifts. Keywords: adhesion; friction; Insecta; locomotion; tarsus; Introduction Although mostly ground dwelling [1], burying beetles (Silphidae) of
PDF
Album
Full Research Paper
Published 04 Jan 2019

Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors

  • Claudio Abels,
  • Antonio Qualtieri,
  • Toni Lober,
  • Alessandro Mariotti,
  • Lily D. Chambers,
  • Massimo De Vittorio,
  • William M. Megill and
  • Francesco Rizzi

Beilstein J. Nanotechnol. 2019, 10, 32–46, doi:10.3762/bjnano.10.4

Graphical Abstract
  • , various thermal effects on piezoresistors such as friction, self-heating and convection were described. Du et al. proposed an additional temperature resistance that could better compensate for temperature changes [41]. Other authors fabricated temperature compensation circuits together with the strain
PDF
Album
Full Research Paper
Published 03 Jan 2019

Contact splitting in dry adhesion and friction: reducing the influence of roughness

  • Jae-Kang Kim and
  • Michael Varenberg

Beilstein J. Nanotechnol. 2019, 10, 1–8, doi:10.3762/bjnano.10.1

Graphical Abstract
  • , stronger adhesion, and a more uniform stress distribution with higher tolerance to defects. However, while it is widely believed that contact splitting helps to mitigate the negative effects of roughness on adhesion- and friction-based attachment, no decisive experimental validation of this hypothesis has
  • been performed so far for thin-film-based adhesives. To this end, we report on the behavior of original and split, wall-shaped adhesive microstructures on different surfaces ranging across four orders of magnitude in roughness. Our results clearly demonstrate that the adhesion- and friction-driven
  • their attachment abilities are reduced if the fibril dimensions are similar to the root-mean-square roughness, the mean spacing between local peaks, and the surface waviness characteristics of the substrate [20][21][22][23]. Analogous negative effects of roughness on adhesion and friction of biomimetic
PDF
Album
Full Research Paper
Published 02 Jan 2019

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • contamination; tip cleaning; tip–sample interaction; van der Waals interaction; Introduction Surface science is fundamental to understand many processes in industrial applications, environmental science, biology, medicine and phenomena such as self-assembly [1], friction [2][3] and wetting [4]. In any study
PDF
Album
Full Research Paper
Published 23 Nov 2018

Layered calcium phenylphosphonate: a hybrid material for a new generation of nanofillers

  • Kateřina Kopecká,
  • Ludvík Beneš,
  • Klára Melánová,
  • Vítězslav Zima,
  • Petr Knotek and
  • Kateřina Zetková

Beilstein J. Nanotechnol. 2018, 9, 2906–2915, doi:10.3762/bjnano.9.269

Graphical Abstract
  • friction bowl. Exfoliation of CaPhP Solvent selection A sample of CaPhP_a (10–13 mg) was put into a small glass vial to which 5 mL of a solvent (distilled water, propan-2-ol, ethanol, butanol, acetone) was added. The mixture was sonicated in an ultrasound bath (f = 37 kHz) for one hour and the temperature
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2018

The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers

  • Elliot Geikowsky,
  • Serdar Gorumlu and
  • Burak Aksak

Beilstein J. Nanotechnol. 2018, 9, 2893–2905, doi:10.3762/bjnano.9.268

Graphical Abstract
  • significantly lower than what has been observed with geckos, their structures exhibited very high friction in the direction along the tilt of fibers, termed here as gripping. Also, low adhesion allowed for an easily removable bio-inspired adhesive. Most of these works have featured softer fibers of monolithic
  • elements with varying elastic modulus as shown in Figure 1b. Using these fibers, the effect of the elastic modulus of the joint between the stalk and the tip on adhesion and friction is investigated. All the fiber array stalks and the tips are made of polyurethane with elastic modulus Es = 126 MPa and Et
  • Figure 1c. Friction and adhesion are measured as a function of initial compressive load (preload) using load–drag–pull (LDP) experiments. Fibers arrays were dragged in the direction of tilt (i.e., gripping direction) and against the tilt direction (i.e., releasing direction) to assess directional
PDF
Album
Full Research Paper
Published 19 Nov 2018

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • wetting and friction properties of a material for numerous applications [5][6][8][23][24]. Yet the type of LIPSSs investigated so far for these applications was mostly limited to those mentioned above (ripples, groves and spikes), and less so the more complex structures that are accessible by exploring a
  • surface morphology. We present experimental results of complex self-organized structures produced in commercial steel that resemble the morphology of the skin of certain reptiles and insects, which are of great interest due to their exceptional fluid transport and friction reduction properties. Surface
  • well defined. In terms of biomimetics, these structures resemble the tiles found on the skin of the Python regius snake, whose microstructure makes it very resistant to damage from wear by reducing friction (c.f. Figure 2E). Laser-based surface texturing has been used to mimic this structure in steel
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  • sandfish due to their ability to swim in loose, aeolian sand. Some studies report that this fascinating property of sandfish is accompanied by unique tribological properties of their skin such as ultra-low adhesion, friction and wear. The majority of these reports, however, is based on experiments
  • conducted with a non-standard granular tribometer. Here, we characterise microscopic adhesion, friction and wear of single sandfish scales by atomic force microscopy. The analysis of frictional properties with different types of probes (sharp silicon tips, spherical glass tips and sand debris) demonstrates
  • every two to three months [6], and we are not aware of any report of observable wear on sandfish skin caused by its swimming in loose sand. Rechenberg [3][7][8] and Baumgartner et al. [6][9][12] conducted pioneering studies analysing friction and wear of sandfish skin applying a granular friction
PDF
Album
Full Research Paper
Published 02 Oct 2018

Friction reduction through biologically inspired scale-like laser surface textures

  • Johannes Schneider,
  • Vergil Djamiykov and
  • Christian Greiner

Beilstein J. Nanotechnol. 2018, 9, 2561–2572, doi:10.3762/bjnano.9.238

Graphical Abstract
  • Reducing friction forces is a major challenge in many engineering applications involving moving parts. For the past 50 years, the morphological texturing of surfaces for improving tribological properties has been investigated. Only recently, the application of biologically inspired surface features, like
  • biologically inspired surface morphology has the potential to reduce friction forces by more than 80%. However, under certain conditions, especially for slow-moving lubricated steel-on-steel and steel-on-ceramic contacts, these surface morphologies may increase friction as well. Similar to classical laser
  • the potential to yield significant reduction in friction forces and are expected to spark future research in the field of biologically inspired surface morphologies applied to tribological contacts. Keywords: bioinspiration; friction; laser surface texturing; scales; tribology; Introduction Friction
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2018

Evidence of friction reduction in laterally graded materials

  • Roberto Guarino,
  • Gianluca Costagliola,
  • Federico Bosia and
  • Nicola Maria Pugno

Beilstein J. Nanotechnol. 2018, 9, 2443–2456, doi:10.3762/bjnano.9.229

Graphical Abstract
  • frictional and adhesive behaviour can also be achieved by exploiting a grading of the material properties. In this paper, we investigate this possibility by considering the frictional sliding of elastic surfaces in the presence of a spatial variation of the Young’s modulus and the local friction coefficients
  • . Using finite-element simulations and a two-dimensional spring-block model, we investigate how graded material properties affect the macroscopic frictional behaviour, in particular, static friction values and the transition from static to dynamic friction. The results suggest that the graded material
  • properties can be exploited to reduce static friction with respect to the corresponding non-graded material and to tune it to desired values, opening possibilities for the design of bio-inspired surfaces with tailor-made tribological properties. Keywords: bio-inspired materials; friction; functionally
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2018

Nanotribology

  • Enrico Gnecco,
  • Susan Perkin,
  • Andrea Vanossi and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 2330–2331, doi:10.3762/bjnano.9.217

Graphical Abstract
  • : nanotribology; nanoadhesion; nanofriction; Nanotribology is a young and dynamic field of research which aims to investigate friction, wear and adhesion phenomena down to the nanometer scale. Since these phenomena occur in all natural, artificial or conceptual situations involving two surfaces (at least) in
  • India, China, Argentina, Cameroon, Russia and USA back to many countries in Old Europe). The covered topics include lubrication, surface preparation and theoretical models of friction at the nanoscale. Regarding the first topic, this Thematic Series gives examples of cutting-edge aqueous solutions
  • , different authors have modeled the influence of electrical double layers on hydrodynamic lubrication [6], the occurrence of a second-order phase transition in ultrathin lubricant films [7] and the velocity dependence of dry friction on crystal surfaces at the atomic scale [8]. While many experimental
PDF
Editorial
Published 28 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • -0044, Japan Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy 10.3762/bjnano.9.190 Abstract Friction is the oldest branch of non-equilibrium condensed matter physics and, at the same time, the least established at the fundamental level. A full understanding
  • and control of friction is increasingly recognized to involve all relevant size and time scales. We review here some recent advances on the research focusing of nano- and mesoscale tribology phenomena. These advances are currently pursued in a multifaceted approach starting from the fundamental atomic
  • -scale friction and mechanical control of specific single-asperity combinations, e.g., nanoclusters on layered materials, then scaling up to the meso/microscale of extended, occasionally lubricated, interfaces and driven trapped optical systems, and eventually up to the macroscale. Currently, this “hot
PDF
Album
Review
Published 16 Jul 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • Christiane Petzold Marcus Koch Roland Bennewitz INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany 10.3762/bjnano.9.157 Abstract Friction force microscopy was performed with oxidized or gold-coated silicon tips sliding on Au(111) or oxidized Si(100) surfaces in
  • ultrahigh vacuum. We measured very low friction forces compared to adhesion forces and found a modulation of lateral forces reflecting the atomic structure of the surfaces. Holding the force-microscopy tip stationary for some time did not lead to an increase in static friction, i.e., no contact ageing was
  • observed for these pairs of tip and surface. Passivating layers from tip or surface were removed in order to allow for contact ageing through the development of chemical bonds in the static contact. After removal of the passivating layers, tribochemical reactions resulted in strong friction forces and tip
PDF
Album
Full Research Paper
Published 05 Jun 2018
Other Beilstein-Institut Open Science Activities