Search results

Search for "metal nanoparticles" in Full Text gives 200 result(s) in Beilstein Journal of Nanotechnology.

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • [3][4], catalysis [5][6][7] and drug delivery [8][9]. The main advantages of such particles are large surface area and low density. The particles can be further modified to provide new properties to these materials. One modification is the incorporation of metal nanoparticles into the polymer beads
  • [10][11][12][13][14][15][16][17]. The resulting composites exhibit a double function, they support the metal nanoparticles and prevent their aggregation. For example, polystyrene microspheres have been decorated with silver nanoparticles and were used as catalysts, Raman-enhancing materials
PDF
Album
Full Research Paper
Published 14 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • [18][19]. Luminescent nanomaterials including semiconductor quantum dots, carbon dots, metal-doped nanoparticles, noble-metal nanoparticles, and organic–inorganic hybrid nanoparticles, have been studied for their ultrabright photoluminescence (PL) [20][21][22][23]. Semiconductor quantum dots (SCQDs
PDF
Album
Review
Published 30 Mar 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • field is extremely important is surface-enhanced Raman scattering (SERS), where Raman spectra can be enhanced by several orders of magnitude. However, there are many other areas where it is possible to increase the efficiency of equipment by increasing the electromagnetic field around metal
  • nanoparticles. For instance, Ag nanoparticles can be used successfully in light emitting diodes, solar cells and photodetectors [11][12][13]. That is why understanding the relationship between the size and shape of nanostructures and the distribution of the electromagnetic field around the structures is
PDF
Album
Full Research Paper
Published 25 Mar 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • attracted wide interest. Particularly attractive is the colorimetric detection of analytes in a liquid phase, which represents a direct way to evaluate the presence of an analyte by the naked eye. This facilitates its implementation as a transduction system in point-of-care devices. Therefore, noble metal
  • nanoparticles (metallic gold) are widely applied in the development of biological sensing devices. Gold is an inert metal that exhibits exceptional chemical stability in physiological media and the readiness for surface functionalization with desired biomolecules through stable Au–S bonds. The key properties of
PDF
Album
Review
Published 31 Jan 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • metal nanoparticles. A simple method employing sol–gel coating of nanoparticles with titania followed by controlled silver diffusion was developed and applied for the synthesis of Ag-modified hollow TiO2 spheres. The morphology of the synthesized structures and their chemical composition was
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • the edges can be covalently modified with several active functionalities or biomolecules. The groups of Shangguan and Tan reported on the biofunctionalization of metal nanoparticles using aptamer-appended DNA tetrahedron nanostructures [68]. The aptamer-appended tetrahedron structures were constructed
  • cancer genomes shows much lower hydrophobicity. The changes in solvation properties of DNA drastically affect the affinity towards metal nanoparticles. Based on these aspects, the authors have efficiently evaluated the affinity of genomic DNA towards metal nanoparticles depending on the methylation
PDF
Album
Review
Published 09 Jan 2020

Long-term stability and scale-up of noncovalently bound gold nanoparticle-siRNA suspensions

  • Anna V. Epanchintseva,
  • Julia E. Poletaeva,
  • Dmitrii V. Pyshnyi,
  • Elena I. Ryabchikova and
  • Inna A. Pyshnaya

Beilstein J. Nanotechnol. 2019, 10, 2568–2578, doi:10.3762/bjnano.10.248

Graphical Abstract
  • nanoconstructions of TNA and metal nanoparticles is not covered in the literature, and began the study of this issue starting with a short period of 24 h. We focused on studying the main signs of preparation spoiling, aggregation of AuNP-siRNA and disruption of siRNA molecules (loss of duplex integrity). The
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2019

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • into account the electronic subsystem, and the interaction between atoms was determined by semi-empirical potentials based on the immersed atom method (EAM potentials) [23]. It was successfully used for modelling the processes of condensation of metal nanoparticles and nanoalloys based on them. In this
PDF
Album
Full Research Paper
Published 13 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • discussed above, the electromagnetic field is generated from the metal nanoparticles. When the AgNPs are on the aggregated copper surface, the electrical field intensity of the plasmonic resonance can be effectively amplified and increased. The results show that the SERS behavior of the AgNP pyramidal
PDF
Album
Full Research Paper
Published 13 Dec 2019

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • various core materials [21][22][23][24]. Recent studies involving spherical capsules have introduced a variety of materials into the core such as DNA, antibiotics, fluorescent dyes, and metal nanoparticles [25][26][27][28][29][30]. These types of particles show great promise for applications such as drug
  • delivery, biosensing, chemical separation, nanoscale reactors, and catalysis [31][32][33][34][35][36][37][38][39][40]. While these examples represent a vast array of potential applications using nanocapsules, one particularly interesting application involves the use of NIR-responsive metal nanoparticles to
  • create photothermally active biomaterials [41][42][43]. Recently, metal nanoshells, a class of optically active core–shell metal nanoparticles, have drawn interest, not only because of their ability to interact with light across a wide range of visible and NIR wavelengths, but also because of their
PDF
Album
Full Research Paper
Published 04 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • coated nanoparticles. Experimental ZF-NMR spectrum of 57Fe nuclei measured at 4.2 K in our metal nanoparticles (MNPs). Open circles and green spheres correspond to our samples of the uncoated and HSA-coated nanoparticles, respectively. The blue dashed line is the spectrum of maghemite nanoparticles
PDF
Album
Full Research Paper
Published 02 Oct 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • –reactor; catalysis; heterostructures; laser ablation; multicomponent; nanoparticles; 4-nitrophenol; plasmonic; Pt; Rh; Introduction Metal nanoparticles can interact with visible light through an excitation of the localized surface plasmon resonance (LSPR). The LSPR is a resonant, collective oscillation
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

The influence of porosity on nanoparticle formation in hierarchical aluminophosphates

  • Matthew E. Potter,
  • Lauren N. Riley,
  • Alice E. Oakley,
  • Panashe M. Mhembere,
  • June Callison and
  • Robert Raja

Beilstein J. Nanotechnol. 2019, 10, 1952–1957, doi:10.3762/bjnano.10.191

Graphical Abstract
  • in catalytic reactions, resulting in targeted product selectivity and hence are, in principle, excellent hosts for metal nanoparticles [11]. Similarly, zeotype materials such as zeolites and aluminophosphates (AlPOs) also possess a wide range of secondary functionalities that could synergise with the
  • 2 nm) maintain a large portion of their porosity when hosting metal nanoparticles, although they lack the more subtle ability to control the space around the active site [13]. In our previous work we have shown that inclusion of a micellular agent, i.e., dimethyloctadecyl[3-(trimethoxysilyl)propyl
  • complete reduction of the Au species, during the activation (calcination/reduction) process. We have thus shown that pore blockage can be minimised by immobilising metal nanoparticles onto hierarchical systems, allowing tailored zeotype catalysts to act as hosts through the inclusion of mesopores, with
PDF
Album
Supp Info
Letter
Published 25 Sep 2019

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • regimes in the dynamics of the nanoparticle growth and in the optical response of the nanocomposite. Keywords: gold; imaging ellipsometry; metal nanoparticles; plasmonic nanocomposite; polymer films; Introduction Over the last 20 years, numerous studies were carried out to investigate the optical
  • properties of plasmonic nanocomposite materials from experimental, theoretical as well as numerical points of view [1][2]. Metal nanoparticles (NPs) play a central role in the development of nanotechnology-based optical devices. Gold nanoparticles (AuNPs) are used in spectrally selective coatings to block
  • the real part of the dielectric function varies is larger than the one over which the energy absorption takes place. When far off the resonance, detecting the optical response of the growing metal nanoparticles can therefore be achieved in considering the variations of the real part of the refractive
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • [17]. Alternatively, ionic liquids can be used as solvents and stabilization agents for different metal nanoparticles from metal carbonyls [18] or organometallic complexes [19]. Ni nanoparticles from Ni(COD)2 in ionic liquids can be obtained through spontaneous decomposition [20] or decomposition
  • ] derivates are equally known [66]. When metal nanoparticles like the Lindlar catalyst PdPb@CaCO3 are used, the formation of (Z)-alkenes [67][68][69][70][71] is favored. For the formation of (E)-alkenes the use of a tandem catalytic system Pd3Pb@SiO2 + RhSb@SiO2 [72] is needed. Catalytic semihydrogenation of
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • from external disturbances [82][83][84]. Zhong and Xu summarized, in their recent review, the preparation of metal nanoparticles for hydrogen generation from liquid chemical hydrides [85]. In their review, the usage of effective catalysts within low-dimensional cages of metal-organic frameworks was
PDF
Album
Review
Published 30 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • beam source in order to remove surface contaminants. A monoatomic argon ion source was utilized with energy of 2 keV, ion current 10 µA, raster area 1 × 1 mm2 and sputtering time 30 s. Results and Discussion Separated metal nanoparticles on the substrate In TE materials the NIs applicable for an
  • realized in the form of separated metal nanoparticles through dc sputtering, or through the local reaction/diffusion of a metallic layer irradiated with electrons or UV photons. The value of the work function barrier is measurable by KPFM at the nanoscale even in ambient atmosphere and, most importantly
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol

  • Mohamad Azani Jalani,
  • Leny Yuliati,
  • Siew Ling Lee and
  • Hendrik O. Lintang

Beilstein J. Nanotechnol. 2019, 10, 1368–1379, doi:10.3762/bjnano.10.135

Graphical Abstract
  • ; Introduction Mesoporous silica nanomaterials with pore size between 2 to 50 nm [1] have been recently applied to the development of biomedical adsorbents [2][3][4], drug delivery systems [5][6][7], catalysts [8][9][10], as well as supports for metal nanoparticles [11][12][13] due to their large surface area
  • the performance for the above-mentioned applications, it is crucial to find a method for template removal. As a host for metal nanoparticles, mesoporous matrixes have been extensively used for the controlled growth of gold nanoparticles (AuNPs) [11][19]. For mesoporous silica, gold sources derived
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • and biological substances where the substrates are crucial for obtaining an enhanced Raman signal [43][44][45]. The Raman signal of SERS is enhanced remarkably in the “hot spots” that are generated in the nanogaps of plasmonic metal nanoparticles (e.g., Au, Ag and Cu) through the amplification of the
  • which the metal nanoparticles are deposited influences both the collection efficiencies and detection sensitivities. Cellulose, such as laboratory filter paper and bacterial nanocellulose, have been considered as superior candidates for the fabrication of SERS substrates with silver nanoparticles, due
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • reaction (ORR) have been evaluated in a rotating ring disk electrode experiment. The Pt3M/N-CNT catalysts revealed excellent electrochemical properties compared to a commercial Pt3Co/Vulcan XC-72 catalyst. The nature of the carbon support plays a key role in determining the properties of the metal
  • nanoparticles, on the preparation of the catalytic layer, and on the electrocatalytic performance in the ORR. On N-CNT supports, the specific activity followed the expected order Pt3Co > Pt3Ni, whereas on the annealed N-CNT support, the order was reversed. Keywords: carbon nanotubes; cobalt; ionic liquid
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Enhanced inhibition of influenza virus infection by peptide–noble-metal nanoparticle conjugates

  • Zaid K. Alghrair,
  • David G. Fernig and
  • Bahram Ebrahimi

Beilstein J. Nanotechnol. 2019, 10, 1038–1047, doi:10.3762/bjnano.10.104

Graphical Abstract
  • exert its antiviral activity from the outside of the cell. Thus, the addition of FluPep to cells in culture prevents infection by influenza viruses, as does intranasal delivery of the peptide in a murine model of human influenza [15]. Noble-metal nanoparticles possess a strong plasmon absorbance, which
  • allows for the detection at very low levels, using a range of approaches, from absorbance [17][18] to photothermal microscopy [19] and various extensions of the latter [20][21]. Noble-metal nanoparticles can be passivated and functionalised with biomolecules such that they possess the biological
  • biological activity of the peptide, for example, due to multivalent functionalisation of the nanoparticles. In addition, silver possesses innate antimicrobial activities [25]. Thus, noble-metal nanoparticles are potentially useful as both functional probes for antiviral peptides and as therapeutic delivery
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • , preferably with clusters of metal nanoparticles, sharp edges and tips, are the key to strong electromagnetic enhancement ranging from 1010 to 1014 [3]. If the values of Raman cross section of the analyte and of SERS enhancement are appropriate, even single-molecule detection is possible. For example, under
  • factor increases approximately as d−8 in the case of two metal nanoparticles with the polarization along the particle axis, which can be roughly applied to the case of two nanowires. However, in the reported substrates SiNWs are randomly oriented and the polarization measurement was not tested in detail
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

Deposition of metal particles onto semiconductor nanorods using an ionic liquid

  • Michael D. Ballentine,
  • Elizabeth G. Embry,
  • Marco A. Garcia and
  • Lawrence J. Hill

Beilstein J. Nanotechnol. 2019, 10, 718–724, doi:10.3762/bjnano.10.71

Graphical Abstract
  • potential to impact a number of applications [1][2][3][4]. Deposition of metal nanoparticles onto the nanorod surface competes with homogeneous nucleation of the metal nanoparticles, with the size and number of metal nanoparticles attached to each nanorod controlled by lattice matching of the materials and
  • using gold. Conclusion In conclusion, we have demonstrated that deposition of noble metal nanoparticles onto CdSe@CdS nanorods is possible using the ionic liquid [bmim][Tf2N] without the need for additional surfactants or reducing agents. These procedures resulted in heterostructured particles with
PDF
Album
Supp Info
Letter
Published 14 Mar 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • enhancement of the Seebeck coefficient for a given carrier concentration. Several groups have used this approach using different metal–semiconductor combinations to improve thermoelectric properties [13][14]. One group has reported the synthesis of bismuth metal nanoparticles (NPs) were through a solvothermal
  • investigation of Ag in a Bi2Te3 matrix while focusing on an easy, reproducible low-cost synthesis suitable for scale-up. We show how to tune S and σ independently to achieve high S2σ values. One objective is to see which fraction of metal nanoparticles is required for the TE enhancement of a Bi2Te3 matrix and
PDF
Album
Full Research Paper
Published 04 Mar 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • MWCNTs decorated with Au nanoparticles were analyzed by TEM in order to observe the distribution of metal nanoparticles on the carbon nanotubes. Figure 1 shows that the CNT sidewalls are densely and quite homogeneously decorated with Au nanoparticles (Table S1 in Supporting Information File 1 shows
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019
Other Beilstein-Institut Open Science Activities