Search results

Search for "milling" in Full Text gives 131 result(s) in Beilstein Journal of Nanotechnology.

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • flexible MoS2-based composite paper by high-energy shear force milling and simple vacuum filtration. This composite material combines high flexibility, mechanical strength and good chemical stability. Chronopotentiometric charge–discharge measurements were used to determine the capacitance of our paper
  • the synthesis of a freestanding MoS2-based composite paper using a small addition of single-walled carbon nanotubes (SWCNTs) and shear-force milling in N-methyl-2-pyrrolidone (NMP). The paper was prepared simply by vacuum filtration of the slurry on top of a filter. The resulting material exhibits
  • additional binders, conductive additives or a current collector. Results and Discussion Characterization of morphology, composition and mechanical properties The synthesized composite material based on MoS2 and SWCNTs was prepared by shear-force milling of MoS2 powder with SWCNTs. We then prepared a paper
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping

  • Lukas Grünewald,
  • Dagmar Gerthsen and
  • Simon Hettler

Beilstein J. Nanotechnol. 2019, 10, 1290–1302, doi:10.3762/bjnano.10.128

Graphical Abstract
  • , which induces unwanted scattering events. Results: Phase masks of conductive amorphous carbon (aC) were successfully fabricated with optical lithography and focused ion beam milling. Analysis by TEM shows the successful generation of Bessel and vortex beams. No charging or degradation of the aC phase
  • structure without any (in-)elastic scattering events, i.e., the amplitude is only modified slightly. Experimentally, focused ion beam (FIB) milling or electron-beam lithography are used to engrave a well-defined thickness profile in an amorphous thin film thereby exploiting the direct proportionality
  • different approaches that yielded reproducible results (Figure 2). For the first method an aC layer was evaporated on the back side of the wafer by PVD (Figure 2c). Afterwards, FIB milling with an intermediate current of 0.75 nA was used to remove Pt and SixNy in a circular area from the top side (Figure 2d
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • were applied to modify the textural properties, while nitrogen functionalities were incorporated via different N-doping methodologies (ball milling and conventional methods) using melamine. A direct relationship between the microporosity of the activated carbons and the limiting current density was
  • according to the doping method applied: ball milling appeared to originate preferentially quaternary and oxidized nitrogen groups, while the formation of pyridinic and pyrrolic groups was favoured by conventional doping. The onset potential was improved and the two-electron mechanism of the original
  • contains nitrogen in its constitution [11][37], and by in situ methods in which nitrogen precursors are introduced during the hydrothermal carbonization [38]. An additional strategy that can be applied to biomass processing is ball milling, which has been proposed as a green, cheap and easy method to
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

Nanoscale optical and structural characterisation of silk

  • Meguya Ryu,
  • Reo Honda,
  • Adrian Cernescu,
  • Arturas Vailionis,
  • Armandas Balčytis,
  • Jitraporn Vongsvivut,
  • Jing-Liang Li,
  • Denver P. Linklater,
  • Elena P. Ivanova,
  • Vygantas Mizeikis,
  • Mark J. Tobin,
  • Junko Morikawa and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2019, 10, 922–929, doi:10.3762/bjnano.10.93

Graphical Abstract
  • modalities of sample preparation for nanoscale imaging include focused ion beam milling and microtome slicing. When the thickness of samples, especially soft biomaterials, is close to 100 nm the cutting tool might cause tear- and cut-induced strain below the surface. In turn, this can cause artifacts in the
PDF
Album
Full Research Paper
Published 23 Apr 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • , we investigate the structural and magnetic properties of ensembles of ferrite nanoparticles with formula Mn1−xCoxFe2O4, (0 ≤ x ≤ 1) prepared by a combined low-energy ball milling and self-combustion method. This simple and low cost synthesis approach (i.e., the synthesis is performed at a relatively
  • (x = 0, 0.25, 0.5, 0.75, 1) were synthesized following a simple method based on solid-state ball milling and calcination of nitrate precursors and citric acid, discussed previously to prepare pure MnFe2O4 [22]. Manganese nitrate (Mn(NO3)2·4H2O, Merck, 99%), iron nitrate (Fe(NO3)3·9H2O, Merck, 99
  • on the magnetic properties of Mn1−xCoxFe2O4 nanoparticles prepared by low-energy ball milling was investigated. Small effects are observed regarding the structure of the sample, while the average particle size and shape remain almost constant. All samples systematically show a lattice parameter
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • method and the incorporation in Bi2Te3 synthesized by ball milling, which yielded a significant enhancement in power factor and ZT in Bi/Bi2Te3 due to the scattering of low-energy electrons by a barrier potential at the Bi–Bi2Te3 interface [15]. Improvement in TE properties has also been observed after
PDF
Album
Full Research Paper
Published 04 Mar 2019

Sputtering of silicon nanopowders by an argon cluster ion beam

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Zhenguo Wang,
  • Wenbin Zuo,
  • Sergey Belykh,
  • Alexander Tolstogouzov,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2019, 10, 135–143, doi:10.3762/bjnano.10.13

Graphical Abstract
  • and 17.3 keV irradiation (Figure 5b and 5c) the particles are no longer visible, and instead, large (larger than the nanoparticle size of 60 nm) morphological structures are presented. Therefore, it can be suggested that an effective milling of the top layer silicon particles occurs. The space between
  • are not clear yet. At the energy of 17.3–34.5 keV the smoothing effect accompanied with the effective ion milling is appeared, which reduces the finite size effect and the sputtering rate. Further, at higher energy (up to 69 keV) the smoothing effect is retained. The dose dependence of the roughness
PDF
Album
Full Research Paper
Published 10 Jan 2019

Layered calcium phenylphosphonate: a hybrid material for a new generation of nanofillers

  • Kateřina Kopecká,
  • Ludvík Beneš,
  • Klára Melánová,
  • Vítězslav Zima,
  • Petr Knotek and
  • Kateřina Zetková

Beilstein J. Nanotechnol. 2018, 9, 2906–2915, doi:10.3762/bjnano.9.269

Graphical Abstract
  • well in the polymer matrix. The pristine calcium phenylphosphonate is able to form a stable and fine dispersion without visible agglomerates in the used CHS-EPOX 520 epoxy resin by a three roll milling, which is a standard polymer processing procedure in which high shear forces between rotating
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2018

Site-controlled formation of single Si nanocrystals in a buried SiO2 matrix using ion beam mixing

  • Xiaomo Xu,
  • Thomas Prüfer,
  • Daniel Wolf,
  • Hans-Jürgen Engelmann,
  • Lothar Bischoff,
  • René Hübner,
  • Karl-Heinz Heinig,
  • Wolfhard Möller,
  • Stefan Facsko,
  • Johannes von Borany and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2018, 9, 2883–2892, doi:10.3762/bjnano.9.267

Graphical Abstract
  • , dimpling, and final Ar+ ion milling, as well as FIB (Zeiss NVision 40) milling including a lift-out process. EFTEM images were recorded with an FEI Titan 80-300 microscope using a 5 eV energy-selecting slit at an energy loss of 17 eV, which is the plasmon-loss peak of Si. This energy is preferable
PDF
Album
Full Research Paper
Published 16 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • , complementary to EBID in that it is top-down, with a significant advantage over ion milling due to the absence of sputtering. It therefore has wide applications, including use on samples that cannot withstand ion exposure, e.g., due to damage susceptibility. The first report of EBIE to our knowledge was in 1979
PDF
Album
Review
Published 14 Nov 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • deposition (EBID) and focused ion beam (FIB) milling [41][42][43] (see [30][44] for reviews). Fabrication methods capable of guaranteeing high reproducibility, cost-effectiveness and scalability to industrial production are, however, still not available at present. Metal vapor deposition on AFM tips is
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Friction reduction through biologically inspired scale-like laser surface textures

  • Johannes Schneider,
  • Vergil Djamiykov and
  • Christian Greiner

Beilstein J. Nanotechnol. 2018, 9, 2561–2572, doi:10.3762/bjnano.9.238

Graphical Abstract
  • the reason why laser surface texturing has replaced other surface texturing techniques over the last decades [10][15], with notable exceptions such as end milling [59]. Another aspect beckoning future research is the hardness of the scale-like structures created by laser texturing. In biological
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • produced via chemical pretreatment, mechanically disintegrated nanocellulose is clustered (agglomerated) with larger dimensions [66]. According to Park et al. [67], the chemical composition in wood-based CNF has an effect on the defibrillation efficiency in wet disk-milling, which improved defibrillation
  • counter collision, ball milling, blending, cryocrushing, electrospinning, extrusion, grinding, homogenization, refining, steam explosion, ultrasonication, or a combination thereof. Chemical reaction Effective and energy-efficient nanocellulose preparation techniques are being pursued to sustain and meet
PDF
Album
Review
Published 19 Sep 2018

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • samples demonstrated linear current–voltage characteristics down to sub-helium temperatures while sustaining high values of conductivity. The cross-section specimens for S/TEM studies were prepared by focus ion beam (FIB) milling in a Helios (FEI, US) SEM/FIB dual-beam system equipped with C and Pt gas
  • injectors and a micromanipulator (Omniprobe, US). A 2 μm Pt layer was deposited on the surface of the sample prior to the cross-section preparation by FIB milling. Sections of approximately 8 × 5 μm2 area and 2 μm thickness were cut by 30 kV Ga+ ions, removed from the sample and then attached to the
PDF
Album
Full Research Paper
Published 14 Sep 2018

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • -sections were prepared by a focused ion beam (FIB) milling process using gallium ions extracted from a high brightness liquid metal ion source. Nitrogen adsorption experiments were performed on a 3Flex Physisorption device (Micromeritics GmbH) at the temperature of liquid nitrogen (−196 °C). Before the
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Two-dimensional photonic crystals increasing vertical light emission from Si nanocrystal-rich thin layers

  • Lukáš Ondič,
  • Marian Varga,
  • Ivan Pelant,
  • Alexander Kromka,
  • Karel Hruška and
  • Robert G. Elliman

Beilstein J. Nanotechnol. 2018, 9, 2287–2296, doi:10.3762/bjnano.9.213

Graphical Abstract
  • with etching [14] or focused ion beam milling [15] are used to prepare photonic structures with well-defined dimensions on small areas. These approaches are therefore suitable for laboratory testings but not for practice. This issue was recently solved by developing large-scale production techniques
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • approaches, which rely on, e.g., electron-beam lithography, ion milling and other techniques, are widely used, often tailoring gap structures explores common limitations in regard to their obtainable resolution and non-invasiveness. In contrast, common bottom-up approaches often rely on the specific
PDF
Album
Full Research Paper
Published 17 Aug 2018

High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

  • Kahraman Keskinbora,
  • Umut Tunca Sanli,
  • Margarita Baluktsian,
  • Corinne Grévent,
  • Markus Weigand and
  • Gisela Schütz

Beilstein J. Nanotechnol. 2018, 9, 2049–2056, doi:10.3762/bjnano.9.194

Graphical Abstract
  • writing/milling capability. IBL allows for rapid prototyping of high-resolution FZPs that can be used for high-resolution imaging at soft X-ray energies. Here, we discuss improvements in the process enabling us to write zones down to 15 nm in width, achieving an effective outermost zone width of 30 nm
  • (SEM), focused ion beam (FIB) dual-beam instrument, installed with a lithography attachment (Please see the Experimental section for details). Several exposure, milling or patterning strategies can be adopted in an IBL process. A few such processing procedures relevant to present work are illustrated
  • once and there will be no adjacent passes as opposed to MP-E or SP-E milling strategies. Therefore, the size of the feature to be written is defined by the ion beam spot size, the interaction volume of the ions within the material and the extent of the collateral damage of the beam tails and secondary
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • total irradiation fluences of the MWCNT samples ranged from 1014 to 1018 ions/cm2. Beam position and primary ion fluence were controlled by the Fibics Nanopatterning and Visualisation Engine (NPVE) (http://www.fibics.com/). The FIBICS nano-patterning software allows for high-performance milling and ion
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells
  • properties. There is a particular need for such efficient direct property-mapping routines for computed tomographic AFM (CT-AFM), in which images are serially acquired during progressive surface milling [6][8]. For instance, to investigate the nearly 50% reduction in efficiency for CdTe solar cells compared
  • directly with the AFM probe simultaneous to the repeated property mapping. Specific settings include a load of ca. 1 µN, a line rate of 0.5 Hz, and a low-deflection feedback gain producing near “open loop” scanning and hence an essentially planar surface milling [8]. Approximately 15 nm in depth are
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction

  • Juan L. Palma,
  • Alejandro Pereira,
  • Raquel Álvaro,
  • José Miguel García-Martín and
  • Juan Escrig

Beilstein J. Nanotechnol. 2018, 9, 1728–1734, doi:10.3762/bjnano.9.164

Graphical Abstract
  • milling, and the subsequent thermal reduction of the antidot arrays. Magnetic characterizations were carried out by magneto-optic Kerr effect measurements, showing the enhancement of the coercivity for the antidot arrays. AFIR opens a new route to manufacture ordered antidot arrays of magnetic oxides with
PDF
Album
Full Research Paper
Published 11 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • the S/ZnO@NCNT composite is about 74.7 wt %, which agrees well with the precursors proportions used during preparation. It can be concluded that the adopted technique, ball-milling followed by heat treatment, enables preparation of a high-performance composite of sulfur and ZnO@NCNT as it is shown in
  • :3 by ball-milling at 350 min−1 for 3 h to obtain the sulfur composite precursor. The S/ZnO@NCNT composite was obtained by heating the precursor at 155 °C for 10 h, in argon flow with a heating rate of 5 °C·min−1. The sulfur-doping method was described in our previous study [33]. Materials
PDF
Album
Full Research Paper
Published 06 Jun 2018

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • different transverse parameters were milled using a helium ion microscope (Nanofab Orion, Zeiss) operating at an accelerating voltage of 30 kV and a beam current of 0.1 to 100 pA. A Fibics NPVE pattern generator was used to control the milling parameters such as dose, beam step size and dwell time. Test
  • writing was performed on a 100 nm thick Au film on a borosilicate glass substrate. Initial exposures indicated a dose of 15 nC/cm2 as the optimal initial setting for the ion beam with a 1 µs dwell time and 50% beam overlap. The optimised ion beam current selected for milling was 1.5–2.4 pA, producing the
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

  • Anulekha De,
  • Sucheta Mondal,
  • Sourav Sahoo,
  • Saswati Barman,
  • Yoshichika Otani,
  • Rajib Kumar Mitra and
  • Anjan Barman

Beilstein J. Nanotechnol. 2018, 9, 1123–1134, doi:10.3762/bjnano.9.104

Graphical Abstract
  • previously. Results and Discussion 25 × 25 μm2 arrays of two-dimensional Py antidot arrays with triangular holes arranged in hexagonal lattice symmetry have been fabricated by a combination of electron-beam lithography, electron-beam evaporation and ion milling [20]. Figure 1a,b shows the scanning electron
  • -dimensional arrays of Py antidots with triangular holes arranged in a hexagonal lattice have been fabricated by a combination of electron-beam lithography, electron-beam evaporation and ion milling. The 20 nm-thick Py film was deposited on a commercially available self-oxidized Si(100) substrate and a 60-nm
  • irradiation of laser light. A PMMA/MMA bilayer resist was used for electron-beam lithography to prepare the resist pattern on the Py thin film followed by argon ion milling at a base pressure of 1 × 10−4 Torr with a beam current of 60 mA for 6 min for etching out the Py film from everywhere except the
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2018

Nematic liquid crystal alignment on subwavelength metal gratings

  • Irina V. Kasyanova,
  • Artur R. Geivandov,
  • Vladimir V. Artemov,
  • Maxim V. Gorkunov and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2018, 9, 42–47, doi:10.3762/bjnano.9.6

Graphical Abstract
  • , which involves the ion-beam milling technique and assembly of the experimental liquid crystal cell. The second section is dedicated to data analysis, where besides polarized microscope observations, we apply the Fourier transform technique to the transmittance spectra in order to extract the effective
  • gratings (Figure 1) are produced by ion-beam milling of the films using an FEI Scios dual beam electron-ion microscope (accelerating voltage 30 kV, ion beam current 0.1–0.3 nA). We have produced a series of gratings on the same substrate in order to be able to observe the influence on LC alignment of such
PDF
Album
Full Research Paper
Published 04 Jan 2018
Other Beilstein-Institut Open Science Activities