Search results

Search for "quantum dots" in Full Text gives 211 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • for the VSi and the nitrogen vacancy (NCVSi) [36]. Micropillars in other materials have been successfully used as photonics structures designed to improve the photoluminescence performance of quantum dots for strong coupling of the emission with the photonics cavity, high photon-extraction efficiency
PDF
Album
Full Research Paper
Published 05 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • et al. [18], reported an increment of the PCE from 2.08 to 2.3% with the incorporation of small amounts of FeS2 nanocrystals (NCs) (0.3 wt %) into the P3HT:PC71BM active layer. Moreover, Khan et al. [47], added 20 wt % FeS2 quantum dots (of ≈5 nm size) and obtained a high PCE of 3.62% compared to the
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications

  • Tugrul Guner,
  • Hurriyet Yuce,
  • Didem Tascioglu,
  • Eren Simsek,
  • Umut Savaci,
  • Aziz Genc,
  • Servet Turan and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 2004–2013, doi:10.3762/bjnano.10.197

Graphical Abstract
  • perovskites [39][40][41], organic dyes [42][43], quantum dots [44] and CDots [15][45]. Among these, CDots are a promising alternative since they are cost effective and optically feasible, making them commercially viable. Employing CDots as color conversion layers in a WLED configuration is a relatively new
  • concept, since the first discovery of these materials dates back only to 2004 [46]. Since then, CDots have been widely studied. For instance, Feng et al. reported on the synthesis of carbon quantum dots for use as single light converters in WLEDs [45]. CDots were prepared by a one-step hydrothermal method
  • Figure 2 shows HRTEM micrographs of several individual nanoparticles identified as carbon quantum dots (CDots). We further diluted the stock solution for the HRTEM analysis in order to obtain the crystal structure of individual CDots avoiding possible agglomerations. As a consequence, the prepared TEM
PDF
Album
Supp Info
Full Research Paper
Published 15 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • as molecular imaging tools [8]. In general, NPs carry high contrast agent payloads in comparison to smaller moieties [9]. Semiconductor quantum dots (QDs) are nanosized crystals, a photostable fluorophore with a broad excitation spectrum but narrow emission at wavelengths dependent on the size and
PDF
Album
Full Research Paper
Published 07 Oct 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • Currently, there is considerable interest in the growth of self-assembled quantum dots their application in optoelectronics and nanosized structures. For instance, semiconducting Si, Ge and SiGe nanocrystals (NCs/NPs) embedded in a dielectric oxide matrix have been found to exhibit strong quantum
PDF
Album
Full Research Paper
Published 17 Sep 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • as quantum dots [22], perovskites [23], organic dyes [24], etc. In the case of phosphors, combining a red phosphor with YAG:Ce3+ over a blue LED is the simplest way of increasing the CRI while reducing the CCT. Phosphors mostly consist of thermally and chemically stable inorganic hosts such as YAG
PDF
Album
Full Research Paper
Published 07 Jun 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • with the average size of the nanodots. Keywords: copper indium gallium selenide (CuInSe2); quantum dots; Introduction The chalcopyrite compound Cu(In,Ga)Se2 (CIGS) is used as the light absorber layer in thin film solar cells that typically consist of a glass substrate, a Mo back contact, the CIGS
  • defects are important sources of radiative and non-radiative recombination affecting the optoelectronic properties of CIS quantum dots (QDs), such as photo-generated carrier lifetime and photoluminescence [15]. We ascribe the increase in the photoluminescence related to the nanodots to the passivation of
PDF
Album
Full Research Paper
Published 22 May 2019
Graphical Abstract
  • to the use of Raman tags, mostly related to the intensity and narrow bandwidth of their Raman peaks. SERS labels can be even brighter than semiconductor quantum dots; for example, the high intensity allows for detection using only a single nanotag with an ordinary Raman spectrometer [27][28]. The
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Deposition of metal particles onto semiconductor nanorods using an ionic liquid

  • Michael D. Ballentine,
  • Elizabeth G. Embry,
  • Marco A. Garcia and
  • Lawrence J. Hill

Beilstein J. Nanotechnol. 2019, 10, 718–724, doi:10.3762/bjnano.10.71

Graphical Abstract
  • without the need for additional surfactants or reducing agents. Results and Discussion CdSe quantum dots and CdSe@CdS nanorods were synthesized using cadmium oxide, octadecylphosphonic acid, hexylphosphonic acid, trioctylphosphine, and trioctylphosphine oxide based on methods reported by Manna et al. and
  • expanded upon by Pyun et al. [27][28]. Our CdSe quantum dots had an average diameter of 2.4 nm as determined using the correlation of particle diameter with the wavelength of the low energy absorbance peak (λmax = 509 nm) [29]. The CdSe@CdS nanorods had an average length of 50 ± 10 nm and an average
PDF
Album
Supp Info
Letter
Published 14 Mar 2019

Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity

  • Vidar Gudmundsson,
  • Hallmann Gestsson,
  • Nzar Rauf Abdullah,
  • Chi-Shung Tang,
  • Andrei Manolescu and
  • Valeriu Moldoveanu

Beilstein J. Nanotechnol. 2019, 10, 606–616, doi:10.3762/bjnano.10.61

Graphical Abstract
  • ]. The formation of very slow Rabi-like spin-flip transitions promoted by the interplay of tunneling and spin orbit interactions in a system of double quantum dots has been studied by Khomitsky et al. [14]. In earlier publications we have shown how a Rabi oscillation can be detected in the transport of
  • , but only in this regime dominated by strong nonequilibrium processes. In the earlier calculations the central system was a short quantum wire with parallel quantum dots of the same shape. The anisotropy of the system makes the first excitation of the even parity one-electron ground state to be an odd
  • parity state with respect to the axis of the quantum dots, the y-axis. Subsequently, y-polarized cavity photons couple the two states strongly through the paramagnetic electron–photon interaction, but only weakly through the diamagnetic interaction. On the other hand, x-polarized photons can only couple
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • promising for CO2 photoreduction because of their excellent activity and environmental sustainability. Keywords: CO2 reduction; metal-free hybrid; nanoflakes; photocatalyst; quantum dots; Introduction The solar-light-assisted photocatalytic reduction of CO2 into useful chemicals, such as HCOOH, HCHO, CH4
  • electronic modification of the g-C3N4 material with rGO, another interesting strategy is to increase the number of catalytic active sites (pyridinic N, graphitic N, and edge amine groups) in g-C3N4 [19]. This can be achieved by generating zero-dimensional (0D) quantum dots (QDs) and nanoflakes (NFs) of g
  • hydrothermal heating, it undergoes many structural changes (breaking of aromatic planes along (002) directions) internally. Thus, the size of the nanosheet is drastically decreased when it transforms into quantum dots. Consequently, the intensity of the planes is expected to largely decrease. In the GCN hybrid
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • understanding of the surface defects and role of morphology in 1D SnO2 nanowires can help to better utilize these nanostructures more efficiently. For this purpose, three different nanowires (NWs), namely belts, cylindrical- and square-shaped structures were grown using SnO2 quantum dots as a precursor material
  • tapered Ag NW waveguides showed that plasmon polaritons are slowed near the tip and subsequent accumulation of energy and giant local fields appear at the tip [9][10]. A NW waveguide was reported for use as a single photon emitter [4][6][7][11]. In particular, InAsP quantum dots embedded on the axis of an
  • , we focus on the growth of elongated SnO2 NWs with different cross sections such as circular, square, and rectangular (belt) using SnO2 quantum dots (QDs) as a precursor material. The waveguide behavior in square- and cylindrical-shaped NWs, uniform-sized nanobelts (NBs), tapered NBs and surface
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

  • Zoltán Scherübl,
  • András Pályi and
  • Szabolcs Csonka

Beilstein J. Nanotechnol. 2019, 10, 363–378, doi:10.3762/bjnano.10.36

Graphical Abstract
  • Group, Budapest University of Technology and Economics, 1111 Budapest, Hungary 10.3762/bjnano.10.36 Abstract Hybrid devices combining quantum dots with superconductors are important building blocks of conventional and topological quantum-information experiments. A requirement for the success of such
  • experiments is to understand the various tunneling-induced non-local interaction mechanisms that are present in the devices, namely crossed Andreev reflection, elastic co-tunneling, and direct interdot tunneling. Here, we provide a theoretical study of a simple device that consists of two quantum dots and a
  • ][14], Majorana states in graphene [15][16][17] and devices with even more exotic non-Abelian excitations, such as parafermions [18][19][20]. CAR was studied experimentally in metallic nanostructures [21][22][23][24] and later in so-called Cooper-pair splitter devices, where two quantum dots (QDs) are
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • Technology, Changchun 130022, P. R. China College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China 10.3762/bjnano.10.3 Abstract Biological applications of core/shell near-infrared quantum dots (QDs) have attracted broad interest due to their unique optical and chemical
  • as an optical process for MCF-7 breast cancer cells. Keywords: bioimaging; gold nanorods; photoluminescence enhancement; quantum dots; Introduction In the past decades, quantum dots (QDs) have proven to be increasingly useful for their unique features [1][2][3][4][5]. The light emission from QDs
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • combined with CVD. As another example, 5 nm GaN quantum dots were deposited by Crozier [86] by EBID from a specially tailored precursor resulting in high-quality uniform deposits on a thin film of Si/SiO2. Shimojo [87] demonstrated the deposition of self-standing nanorods, 10 nm in diameter, by electrons
PDF
Album
Review
Published 14 Nov 2018

Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition

  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Eleonora M. Danilina and
  • Sergei N. Chebotarev

Beilstein J. Nanotechnol. 2018, 9, 2794–2801, doi:10.3762/bjnano.9.261

Graphical Abstract
  • Electronics, Platov South-Russian State Polytechnic University (NPI), 346428, 132, Prosveshchenia str., Novocherkassk, Russia 10.3762/bjnano.9.261 Abstract This work reports on an experimental investigation of the influence of vertical stacking of quantum dots, the thickness of GaAs potential barriers, and
  • their isovalent doping with bismuth on the photoluminescence properties of InAs/GaAs heterostructures. The experimental samples were grown by ion-beam deposition. We showed that using three vertically stacked layers of InAs quantum dots separated by thin GaAs barrier layers was accompanied by a red
  • heterostructures was investigated. It was found that the Bi content up to 4.96 atom % in GaAs decreases the density of InAs quantum dots from 1.53 × 1010 to 0.93 × 1010 cm−2. In addition, the average lateral size of the InAs quantum dots increased from 14 to 20 nm, due to an increase in the surface diffusion of In
PDF
Album
Full Research Paper
Published 02 Nov 2018

Silencing the second harmonic generation from plasmonic nanodimers: A comprehensive discussion

  • Jérémy Butet,
  • Gabriel D. Bernasconi and
  • Olivier J. F. Martin

Beilstein J. Nanotechnol. 2018, 9, 2674–2683, doi:10.3762/bjnano.9.250

Graphical Abstract
  • gap of a few nanometers [6]. Several methods have been developed for the fabrication of these nanoantennas, including both top-down and bottom-up approaches [7]. The challenge of loading the interstice between the two arms with different materials, including single molecules [8], quantum dots [9], and
PDF
Album
Full Research Paper
Published 15 Oct 2018

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • light emitted by quantum dots or molecules [2][3], and to kill cancer cells [4]. This resonance is directly linked to the intrinsic properties of the metallic nanoparticles (depending on the geometry or the nature of the metal), which makes it difficult to easily control its spectral position. Many
PDF
Album
Full Research Paper
Published 08 Oct 2018

Interaction-induced zero-energy pinning and quantum dot formation in Majorana nanowires

  • Samuel D. Escribano,
  • Alfredo Levy Yeyati and
  • Elsa Prada

Beilstein J. Nanotechnol. 2018, 9, 2171–2180, doi:10.3762/bjnano.9.203

Graphical Abstract
  • features are observed in recent experiments on the detection of Majoranas and could thus help to properly characterize them. Keywords: hybrid superconductor–semiconductor nanowires; interactions; Majorana bound states; quantum dots; Introduction Semiconducting nanowires with strong spin–orbit interaction
  • unexplored before is the creation of deep potential wells at the ends of the wire close to the bulk metallic electrodes. These wells, obtained explicitly here through the self-consistent calculation, are similar to the confinement potentials typical of quantum dots. Localized quantum dot-like energy levels
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • the NPs in the fibers. Based on the type of NP (0D – dots, 1D – wires, 2D – plates), the nanofibers can be classified as: 0D NPs–electrospun fibers containing quantum dots or zero-dimensional particles, 1D NPs–electrospun fibers containing wires or similar elongated morphologies, 2D NPs–electrospun
PDF
Album
Supp Info
Review
Published 13 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • other hand. Hybrid PV devices include various technologies such as perovskite cells, dye sensitized solar cells (DSSC), with power efficiencies up to 13% [5] and hybrid bulk heterojunctions (HBHJ), which combine an organic matrix and inorganic semiconducting nanostructures such as quantum dots. Among
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • versatile and low-cost integrated light sources, and optical tunneling gap antennas may provide an alternative technology to solid-state light emitting diodes or quantum dots. Coupling of such a junction have been recently demonstrated in plasmonic strips [27][59] and we extend the concept to dielectric
PDF
Album
Full Research Paper
Published 11 Jul 2018

A zero-dimensional topologically nontrivial state in a superconducting quantum dot

  • Pasquale Marra,
  • Alessandro Braggio and
  • Roberta Citro

Beilstein J. Nanotechnol. 2018, 9, 1705–1714, doi:10.3762/bjnano.9.162

Graphical Abstract
  • temperatures. Keywords: Josephson effect; Josephson junctions; quantum dots; superconducting quantum dots; topological states; topological superconductors; Introduction Since the discovery of the quantum Hall effect [1][2] and the theoretical prediction of Majorana bound states in triplet superconductors [3
  • discontinuities and ground-state parity crossings [55][56][57][58][59][60][61] have been recognized as precursors of Majorana modes in the long-wire limit [27][50], and of Floquet–Majorana modes realized in driven quantum dots [62][63]. We will analytically derive and discuss the spectrum and the Josephson
PDF
Album
Full Research Paper
Published 08 Jun 2018

Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields

  • Margarita A. Kurochkina,
  • Elena A. Konshina and
  • Daria Khmelevskaia

Beilstein J. Nanotechnol. 2018, 9, 1544–1549, doi:10.3762/bjnano.9.145

Graphical Abstract
  • , Russia 10.3762/bjnano.9.145 Abstract We have experimentally investigated the effect of the reorientation of a nematic liquid crystal (LC) in an electric field on the photoluminescence (PL) of CdSe/ZnS semiconductor quantum dots (QDs). To the LC with positive dielectric anisotropy, 1 wt % QDs with a core
  • obtained results are interesting for controlling the PL intensity of semiconductor QDs in liquid crystals by the application of electric fields. Keywords: aggregation; decay time; liquid crystal; luminescence intensity; orientation; Introduction Colloidal quantum dots (QDs) are a special kind of
  • nanocrystals. These nanoparticles (NPs) of spherical shape are unique luminophores due to the dimensional dependence of the optical properties. The small dimensions of QDs (of the order of 1–10 nm) make it possible to integrate QDs relatively easily into hybrid structures and composite materials. Quantum dots
PDF
Album
Full Research Paper
Published 23 May 2018

Spatial Rabi oscillations between Majorana bound states and quantum dots

  • Jun-Hui Zheng,
  • Dao-Xin Yao and
  • Zhi Wang

Beilstein J. Nanotechnol. 2018, 9, 1527–1535, doi:10.3762/bjnano.9.143

Graphical Abstract
  • states. Quantum dot has been proved to be a good probe to study the Majorana bound states [27][3][28][29][30][31][32][33][34][35][36][7][37][38]. The quantum dots are zero-dimensional systems that have controllable discrete energy levels. The Rabi oscillation, a fundamental quantum phenomenon in two
  • -level quantum systems, may occur between the states of the quantum dot when the quantum dot is periodically modulated. In particular, the spatial Rabi oscillation between two quantum dots has been proven to be useful for single-electron pumping. An attractive idea is to exploit the spatial Rabi
  • oscillation between the quantum dots and the Majorana bound states [29] and to investigate the self-conjugateness and exponential protection of Majorana bound states. In recent experiments, a hybrid structure of a quantum dot and a one-dimensional topological superconductor nanowire has been realized [36
PDF
Album
Full Research Paper
Published 22 May 2018
Other Beilstein-Institut Open Science Activities