Search results

Search for "wear" in Full Text gives 99 result(s) in Beilstein Journal of Nanotechnology.

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • linear with preload force. Carbon nanofibers oriented by a magnetic field show a 68% higher adhesion (0.66 N/cm2) than the randomly oriented fibers. Endurance tests revealed that the carbon nanofiber arrays withstand 50.000 attachment/detachment cycles without observable wear. Keywords: adhesion; atomic
PDF
Album
Full Research Paper
Published 15 Dec 2017

Exploring wear at the nanoscale with circular mode atomic force microscopy

  • Olivier Noel,
  • Aleksandar Vencl and
  • Pierre-Emmanuel Mazeran

Beilstein J. Nanotechnol. 2017, 8, 2662–2668, doi:10.3762/bjnano.8.266

Graphical Abstract
  • de Compiègne, UMR CNRS 7337, Roberval, Centre de recherche de Royallieu – CS 60 319 – 60 203 Compiègne cedex, France 10.3762/bjnano.8.266 Abstract The development of atomic force microscopy (AFM) has allowed wear mechanisms to be investigated at the nanometer scale by means of a single asperity
  • contact generated by an AFM tip and an interacting surface. However, the low wear rate at the nanoscale and the thermal drift require fastidious quantitative measurements of the wear volume for determining wear laws. In this paper, we describe a new, effective, experimental methodology based on circular
  • mode AFM, which generates high frequency, circular displacements of the contact. Under such conditions, the wear rate is significant and the drift of the piezoelectric actuator is limited. As a result, well-defined wear tracks are generated and an accurate computation of the wear volume is possible
PDF
Album
Full Research Paper
Published 11 Dec 2017

Numerical investigation of the tribological performance of micro-dimple textured surfaces under hydrodynamic lubrication

  • Kangmei Li,
  • Dalei Jing,
  • Jun Hu,
  • Xiaohong Ding and
  • Zhenqiang Yao

Beilstein J. Nanotechnol. 2017, 8, 2324–2338, doi:10.3762/bjnano.8.232

Graphical Abstract
  • simulation; hydrodynamic lubrication; micro-dimple array; surface texture; tribological performance; Introduction The wear caused by friction is considered to be the main reason for the failure of mechanical systems and the major source of energy loss [1]. Various methods have been developed to reduce
  • friction and wear. One of the most promising solutions is the introduction of surface texturing on a friction pair. The benefits of surface texturing and the effects of texturing parameters on tribological performance have been experimentally and theoretically investigated over the past two decades
  • properly designed surface texture acts as micro-hydrodynamic bearings on the friction pair, which help to reduce friction and increase the load-carrying capacity. In addition, the surface texturing also provides extra space to reserve lubricant and entrap wear debris. Furthermore, parametric studies were
PDF
Album
Full Research Paper
Published 06 Nov 2017

Molecular dynamics simulations of nanoindentation and scratch in Cu grain boundaries

  • Shih-Wei Liang,
  • Ren-Zheng Qiu and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2017, 8, 2283–2295, doi:10.3762/bjnano.8.228

Graphical Abstract
  • ] techniques have been used to measure the mechanical properties and wear resistance of materials with the aim to design nanoscale devices. On a microscopic level, the dislocation phenomenon of the internal material affects its structure. However, the observation of this slight change in the internal structure
  • face-centered cubic (FCC) Cu atoms comprised the substrate (red and green). With the aim to exclusively study the behavior of the substrate, the indenter was considered as a rigid body (i.e., the indenter wear was not investigated). However, the substrate atoms were set to follow a Newtonian behavior
PDF
Album
Full Research Paper
Published 01 Nov 2017

Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2230–2244, doi:10.3762/bjnano.8.223

Graphical Abstract
  • damage induced by constant tip drag. Additionally, these methods are prone to significant tip wear and contamination which could make quantitative characterization unreliable due to constant changes in tip geometry. Dynamic methods have been designed to overcome the above issues, whereby tapping-mode AFM
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2017

In situ controlled rapid growth of novel high activity TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites

  • Jilin Wang,
  • Hejie Liao,
  • Yuchun Ji,
  • Fei Long,
  • Yunle Gu,
  • Zhengguang Zou,
  • Weimin Wang and
  • Zhengyi Fu

Beilstein J. Nanotechnol. 2017, 8, 2116–2125, doi:10.3762/bjnano.8.211

Graphical Abstract
  • stability, as well as excellent electrical and thermal conductivity [4][5][6]. On the other hand, titanium nitride (TiN) has some attractive properties, such as high hardness, low electrical resistivity, excellent wear and corrosion resistance [1][2][7]. Therefore, it is expected that these unique
  • properties will make TiB2/TiN composites an attractive prospect for practical applications in many fields such as super-hard materials, electrodes, wear resistance materials, armor plates, jet engine parts and high temperature ceramic components [1][3][7][8]. The previous researches were primarily focused on
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2017

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • conventional oil additives generally fail to improve tribological performance in aqueous environments. Numerous studies of nanoparticulate additives to oil-based systems have been reported in the literature, with many displaying significant improvements in macroscopic friction and wear rates [6]. Water-based
  • here. It is notable that the changes in the QCM behavior upon immersion in +ND suspensions were very slow and gradual, in a stark contrast to the effects of the −ND suspensions. Detrimental wear at the macroscale might well out-pace any beneficial effects of ND for such liquid–solid interfaces. We note
PDF
Album
Full Research Paper
Published 29 Sep 2017

Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

  • Patrícia M. Amorim,
  • Ana M. Ferraria,
  • Rogério Colaço,
  • Luís C. Branco and
  • Benilde Saramago

Beilstein J. Nanotechnol. 2017, 8, 1961–1971, doi:10.3762/bjnano.8.197

Graphical Abstract
  • tetrafluoroborate [BF4] and bis(trifluoromethylsulfonyl)imide [NTf2] mixed with propylene glycol dioleate to lubricate Al alloys. There was no impact on the friction coefficient but the wear rate was reduced significantly. The group of Liu [9][10][11][12][13] extensively investigated the role of ILs formed by
  • order to understand the mechanism involved in the lubrication process. Results and Discussion Friction and wear under dry conditions For comparison purposes, a set of nanotribological tests were done under dry conditions in a nitrogen stream using substrates and counter bodies similar to those used in
  • the lubricated tests, the same normal load and scanning speed. The number of cycles used was 3100. In these tests it was observed that, after a very short running in period, the friction coefficient (CoF) stabilizes at a value of 0.7. Clear wear tracks could be observed, even with unaided eye, after
PDF
Album
Full Research Paper
Published 20 Sep 2017

Nanotribological behavior of deep cryogenically treated martensitic stainless steel

  • Germán Prieto,
  • Konstantinos D. Bakoglidis,
  • Walter R. Tuckart and
  • Esteban Broitman

Beilstein J. Nanotechnol. 2017, 8, 1760–1768, doi:10.3762/bjnano.8.177

Graphical Abstract
  • , SE581 83 Linköping, Sweden 10.3762/bjnano.8.177 Abstract Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological
  • nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that
  • cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. Keywords: carbide refinement; cryogenic treatments; friction; nanoindentation; nanoscratch; wear-resistance improvement; Introduction AISI
PDF
Album
Full Research Paper
Published 25 Aug 2017

Collembola cuticles and the three-phase line tension

  • Håkon Gundersen,
  • Hans Petter Leinaas and
  • Christian Thaulow

Beilstein J. Nanotechnol. 2017, 8, 1714–1722, doi:10.3762/bjnano.8.172

Graphical Abstract
  • scale [5]; this makes Collembola cuticle structures easily reproducible, as well as more resilient against mechanical wear [7]. While the water repellency of Collembola has long been described in general, macroscopic terms, a specific mechanical explanation has been lacking. Cassie and Baxter described
PDF
Album
Full Research Paper
Published 18 Aug 2017

The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential

  • Dalei Jing,
  • Yunlu Pan and
  • Xiaoming Wang

Beilstein J. Nanotechnol. 2017, 8, 1515–1522, doi:10.3762/bjnano.8.152

Graphical Abstract
  • reduce friction and wear. With respect to fluid lubrication, it can be divided into various regimes or states based on the thickness of the lubricant film, such as dry friction with a lubricant film thickness of ≈1–10 nm, boundary lubrication (≈1–50 nm), thin film lubrication (≈10–100 nm) and fluid film
PDF
Album
Full Research Paper
Published 25 Jul 2017

Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime

  • Shende Rashmi Chandrabhan,
  • Velayudhanpillai Jayan,
  • Somendra Singh Parihar and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2017, 8, 1476–1483, doi:10.3762/bjnano.8.147

Graphical Abstract
  • nanolubricant in an induced draft (ID) fan results in the remarkable decrease in the power consumption. Keywords: friction; lubrication; nanolubricant; nitrogen-doped reduced graphene oxide; tribology; wear; Introduction Advances in machine technology necessitate the reduction in energy loss by improving the
  • tribological performance. This energy loss is caused primarily by friction and wear. The employment of lubricants in machines reduces friction and wear, which results in energy saving. However, the tribological performance of conventional lubricants (water and oil) fails to meet the demand of newly developed
  • strength. Lin et al. studied the tribological properties of modified graphene platelets dispersed in oil and shows that the graphene platelets improved the wear resistance and load-carrying capacity of the machine after the modification [22]. Song et al. compared the tribological properties of multiwalled
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2017

Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy

  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Francesc Pérez-Murano,
  • Enrique Rull Trinidad,
  • Urs Staufer and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 883–891, doi:10.3762/bjnano.8.90

Graphical Abstract
  • works, at the sharp attractive–repulsive transition, which implies a rather involved experimental determination, while using approach curves one can select the setpoint and thus the A6 intensity in a larger range (within the repulsive mode). However, larger repulsions may lead to wear, and thus to
  • with a higher slope at the beginning and a lower slope afterwards. Because of the expected tip wear, the evolution observed in Figure 5 can be again ascribed to an increase in tip radius. This method has been proposed to monitor the stability of the tip in a continuous manner [13][26][27]. The
  • samples have to be changed, a variation of the tip radius cannot be excluded. The sample with the highest wear was titanium, because of its higher roughness as compared to the rest of the samples, and for this reason it was measured at the end of the cycles. From the figure it can be clearly observed that
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2017

Diffusion and surface alloying of gradient nanostructured metals

  • Zhenbo Wang and
  • Ke Lu

Beilstein J. Nanotechnol. 2017, 8, 547–560, doi:10.3762/bjnano.8.59

Graphical Abstract
  • and alloys. In addition, GNS materials exhibit significantly enhanced wear resistance and fatigue resistance compared with their nano-grained and CG counterparts [4][5][6][7]. Investigating the diffusion behavior of GNS materials is an important topic mostly due to the following reasons: Numerous
  • works have been carried out on advancing surface alloying techniques of metals with a preformed nanostructured surface layer. The advantages are distinct, for example, improving surface properties such as wear and corrosion resistance with higher energy/time efficiency, reducing work-piece distortion
  • -temperature processes: Surface alloying processes, such as nitriding and aluminizing, have been achieved on various engineering metals with a GNS surface layer at temperatures much lower than the conventional processing temperatures, and properties such as resistance to wear and corrosion were significantly
PDF
Album
Review
Published 03 Mar 2017

Studying friction while playing the violin: exploring the stick–slip phenomenon

  • Santiago Casado

Beilstein J. Nanotechnol. 2017, 8, 159–166, doi:10.3762/bjnano.8.16

Graphical Abstract
  • , earthquakes, the squeaky sounds caused by the scratching of two surfaces like a chalk on a blackboard, the grinding of a rusty hinge, or the wear of articular joints [4]. This phenomenon is caused by the rupture of equilibrium occurring when two materials are steadily being rubbed against each other
PDF
Album
Full Research Paper
Published 16 Jan 2017

Functional diversity of resilin in Arthropoda

  • Jan Michels,
  • Esther Appel and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1241–1259, doi:10.3762/bjnano.7.115

Graphical Abstract
  • break) in the wings of wasps plays a major role in mitigating wing wear by flexion along this joint when the wings hit an obstacle. This mechanism is especially important for wings with wing veins extending all the way to the tip because such a design endows a wing with more spanwise rigidity than, for
PDF
Album
Review
Published 01 Sep 2016

In situ observation of deformation processes in nanocrystalline face-centered cubic metals

  • Aaron Kobler,
  • Christian Brandl,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2016, 7, 572–580, doi:10.3762/bjnano.7.50

Graphical Abstract
  • materials [24], radiation-resistant materials for nuclear reactors [25], applications for wear and corrosion protection [6][26] and for flexible electrical components [27]. Beside simulations [12][13][14][17][28][29], only few experimental methods are capable to measure in situ structural signatures of the
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2016

Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles

  • Ilana Perelshtein,
  • Anat Lipovsky,
  • Nina Perkas,
  • Tzanko Tzanov and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2016, 7, 1–8, doi:10.3762/bjnano.7.1

Graphical Abstract
  • uses, military clothing, work-wear uniform, and as household decorative textiles. XRD patterns of sonochemically coated fabrics with: (a) ZnO and (b) CuO NPs. Images of textile fibers (shredded bandages) colored with RO16 and RB5 dyes and functionalized with ZnO and CuO NPs in a one-step sonochemical
PDF
Album
Full Research Paper
Published 04 Jan 2016

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • wide spectrum of polymers has been investigated including polystyrene (PS) [13][20], poly(methyl methacrylate) (PMMA) [25], poly(ethylene terephthalate) (PET) [23], poly(vinyl acetate) (PVAc) [26] and poly(ε-caprolactone) (PCL) [23]. Recently, we have reviewed wear occurring on polymeric surfaces and
  • well known before the invention of the AFM methods. In particular, it was studied at a macroscopic level by sliding stiff objects, generally cones or spheres, over polymer samples. Plastic deformation and wear of polymer surfaces represented the subject of several experimental works carried out
  • starting from the sixties of the last century. One of the most striking observations was the formation of macroscopic surface undulations, nowadays known as ‘Schallamach waves’ [28][29]. With the invention of AFM, the scientific interest moved to the investigation of plastic deformation and wear in polymer
PDF
Album
Review
Published 02 Dec 2015

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

  • Arnaud Caron and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2015, 6, 1721–1732, doi:10.3762/bjnano.6.176

Graphical Abstract
  • highly concentrated around the AFM indenter. In a recent study, we have compared the nano-scale wear of Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic glass by AFM scratching in UHV. The friction forces measured during reciprocal scratching with a diamond-coated silicon tip were found to be four times
PDF
Album
Full Research Paper
Published 13 Aug 2015

Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

  • Jana Vlachová,
  • Rebekka König and
  • Diethelm Johannsmann

Beilstein J. Nanotechnol. 2015, 6, 845–856, doi:10.3762/bjnano.6.87

Graphical Abstract
  • fretting wear [1][2] granular media [3], earthquakes [4], and the collision between particles [5]. Early models of partial slip were formulated independently by Cattaneo [6] and Mindlin [7], who were concerned with a Hertzian contact. If the entire contact area sticks, a continuum treatment predicts a
  • small tangential displacement at contacts between rough surfaces. These small displacements per se have little influence on the strength of the contact. They are still of immense practical relevance because they cause fretting wear [19][20][21], which is a special type of corrosion. Microslip at
  • crack tip. The load dependence of µ points to yet another benefit of “contact splitting” [40][41]. A large number of small contacts will experience less partial slip (less fretting wear) than a small number of correspondingly larger contacts. A side remark: The agreement between the two friction
PDF
Album
Full Research Paper
Published 30 Mar 2015

Stick–slip behaviour on Au(111) with adsorption of copper and sulfate

  • Nikolay Podgaynyy,
  • Sabine Wezisla,
  • Christoph Molls,
  • Shahid Iqbal and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2015, 6, 820–830, doi:10.3762/bjnano.6.85

Graphical Abstract
  • . The slope of the stick curve is 12 N/m. In all cases it is between 10 and 12 N/m and independent of potential. It is important to mention that at all potentials the surface is very resistant to wear; even at high normal loads of about 250 nN, atomic resolution is always visible. At the pzc the quality
PDF
Album
Full Research Paper
Published 26 Mar 2015

Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

  • M. Kalyan Phani,
  • Anish Kumar,
  • T. Jayakumar,
  • Walter Arnold and
  • Konrad Samwer

Beilstein J. Nanotechnol. 2015, 6, 767–776, doi:10.3762/bjnano.6.79

Graphical Abstract
  • the global ultrasonic absorption is obtained at higher loads only. Hence, a slightly higher value of load was selected at which no noticeable wear of the tip and no slipping in the tip–sample contact were observed and, hence, uniform measurements throughout the scan were assured. The contact-resonance
PDF
Album
Full Research Paper
Published 18 Mar 2015

Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

  • Jan Michels and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2015, 6, 674–685, doi:10.3762/bjnano.6.68

Graphical Abstract
  • break because of local stress concentrations under high mechanical loads when they are in contact with other hard structures [44]. To test the idea that the non-siliceous gnathobase parts might have evolved specific properties that reduce the risk of wear and damage of the siliceous teeth, the materials
  • gradient in the material properties) can make these systems more resistant to damage and wear because such an architecture minimises the probability of local stress concentrations and, in the case of an initial damage, prevents further crack propagation [47][48]. It is conceivable that the soft and elastic
PDF
Album
Video
Review
Published 06 Mar 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • present paper. As far as the tips did not make contact with the surface (either by particle contamination or the surface or problems with feedback loop control) we did not observe tip wear. Discussion In Figure 6 the main results of the kinetics study of LAO-AFM are summarized. Figure 6a shows the line
PDF
Album
Full Research Paper
Published 19 Jan 2015
Other Beilstein-Institut Open Science Activities