Search results

Search for "DNA" in Full Text gives 282 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • . The nanoparticles caused cytotoxicity via oxidative stress, causing DNA damage and activation of p53-mediated cell cycle arrest (significantly elevated expression, p < 0.005, majorly G1 and G2/M arrest) and apoptosis. Cytotoxicity testing in 3D spheroids showed significant (p < 0.05) reduction in
  • biocompatibility of NPs-PMA at a given dose and treatment time. Cells undergo oxidative stress upon treatment with functionalized MFe2O4 NPs Generation of ROS has been associated with DNA damage, inflammation, apoptosis and senescence in cells [41]. The 2',7'-dichlorodihydrofluorescein diacetate (H2-DCFDA) assay
  • ). Several studies have indicated that spinel ferrite MFe2O4 (M = Fe, Co, Ni, Zn) NPs cause cytotoxicity via oxidative stress which results in damage to the cell membrane, proteins, and DNA [41][42][43]. However, how NPs are processed inside the cell is also a contributing factor in ROS production [44]. For
PDF
Album
Full Research Paper
Published 02 Dec 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • fractal [39][40]. Figure 1 shows various fractal geometries found in nature. Complex patterns seen in human lungs, lines on the surface of human brains, neuron distribution, molecular chains of proteins, and DNA structures with double helix are described by fractal geometries [41]. Ice crystals
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • biomolecules, such as proteins, peptides, and DNA have received extensive attention in recent years [86]. Liu et al. [87] used electrostatic force to adsorb tetrakis(4-sulfonatophenyl)porphine (TPPS) molecules on the surface of 9-fluorenylmethoxycarbonyl-ʟ-lysine (Fmoc-ʟ-Lys) self-assembled nanofibers such
PDF
Album
Review
Published 12 Oct 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • release, too [15]. Fluoroquinolones, a class of broad-spectrum DNA gyrase inhibiting antibiotics, are used as therapeutics for many intracellular pathogens [16][17][18][19][20]. Recently, they have been explored for their activity as an anti-TB drug [16][17]. Currently, they are used as second-line anti
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • superparamagnetic iron oxide nanoparticles functionalized with sodium dodecyl sulfate (SDS) and coated with chitosan (40–45 nm), were able to induce apoptosis (IC50 30 µg/mL) in HeLa (cervical cancer) cells by damaging the DNA and increasing caspase-3 [136]. Curcumin-loaded, pH-sensitive Janus magnetic mesoporous
  • ][30][31][32][33][34][35][36][37][38]. Carcinoembryonic antigen (CEA); vascular endothelial growth factor (VEGF); cancer antigen 15.3 (CA15.3); DNA adduct 3-(2-deoxy-β-di-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1G); enzyme cyclooxygenase-2 (COX-2); colorectal aberrant crypt foci (ACF
PDF
Album
Review
Published 15 Sep 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • incorporated drug. A wide range of molecules including the anthrax vaccine [26], aminolevulinic acid [27], calcein [28], erythropoietin [29], bovine serum albumin [30][31], ovalbumin [32], insulin [33][34], and plasmid DNA [35] have been transdermally delivered using microneedles of various designs, aimed at a
PDF
Album
Review
Published 13 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • nanoparticles in different biological systems (liver, spleen, and kidney) of Wistar rats was observed [70]. The study revealed that gold nanoparticles of 10 nm size exhibited an oxidation-induced deleterious effect evident through nuclear localization and greater DNA damage. Despite oxidative imbalance induced
PDF
Album
Review
Published 18 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • complex. Additionally, it was confirmed in experiments with Mg2+ ions, instead of Cu2+ ions, which are much less capable of complexation with nucleobases. Moreover, Mg2+ cations have been shown [35] to have the lowest affinity to DNA molecules among doubly charged ions (Mg2+ < Co2+ < Ni2+ < Mn2+ < Zn2
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • cellular membrane and to disrupt internal cellular components, such as DNA [2][3][4][5][6]. Silver nanoparticles (Ag-NPs), in particular, are known for their antimicrobial properties and are one of the most extensively studied inorganic antimicrobial agents [7][8][9]. Early studies suggested that Ag-NPs
PDF
Album
Full Research Paper
Published 05 Aug 2021

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

  • Khosro Adibkia,
  • Ali Ehsani,
  • Asma Jodaei,
  • Ezzatollah Fathi,
  • Raheleh Farahzadi and
  • Mohammad Barzegar-Jalali

Beilstein J. Nanotechnol. 2021, 12, 786–797, doi:10.3762/bjnano.12.62

Graphical Abstract
  • real-time PCR. After incubation of the BM-MSCs in the presence of Ag-NPs, genomic DNA was isolated from experimental groups I (cardiomyogenically differentiated BM-MSCs without Ag-NP treatment), II (BM-MSCs treated with Ag-NPs), and III (cardiomyogenically differentiated BM-MSCs treated with Ag-NPs
  • -NPs), and group III (cardiomyogenically differentiated BM-MSCs with Ag-NPs). At the end of treatment time (14 days), genomic DNA was extracted and the absolute TL was measured by real-time PCR as previously described by O’Callaghan and Fenech [46]. The primers used are listed in Table 2 [47]. Gene
  • reaction tube; (B) standard curve for calculating genome copies using the 36B4 copy number (The x-axis represents the number of the cycle and the y-axis shows the concentration of the standard). (C) Real-time PCR was carried out with 20 ng/μL of DNA from three groups for evaluating the aTL in triplicate
PDF
Album
Full Research Paper
Published 02 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • ] designed a molecular robot similar to an amoeba, innovatively using specific photoresponsive DNA signaling molecules to control the movement of the robot. Unlike other nanorobots, this robot is entirely composed of biological and chemical components. The main structure is a vesicle composed of phospholipid
  • bilayers, which also contains an actuator and a clutch inside. When the robot is irradiated by ultraviolet light, the photoresponsive DNA will split into single strands and attach to the microtubules. The slide of microtubules causes the outer cell membrane to change shape, which transforms the robot from
  • has a better development prospect. Patino et al. [43] combined DNA nanoswitches with urease-powered micromotors to achieve the goal of swimming and sensing the pH value of the environment. In this study, the urease-powered micromotor served two functions. It detected changes in the pH value through
PDF
Album
Review
Published 20 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • and could be applied to MNRs. MaBiDZ is mainly composed of three parts, that is, the DZb strand, MaB1, and MaB2. MaB1 is conjugated with DZa, and MaB2 is conjugated with a DNA hook strand complementary to F-sub. An external magnetic field will make MAb1 and MAb2 aggregate, so that the activated BiDz
  • magnetic helices have been shown to be used as drug carriers delivering liposomes loaded with drugs or DNA to single cells [80]. This reflects the prominent role of tubular and helical spermbots and microrobotic for research on medical treatment. Different from the magnetic tubular and helical structures
  • analyte. The magnetic bead (MaB) architecture is composed of a 15 nm iron oxide (Fe3O4) superparamagnetic core encased in a silica shell. The DNA strands are conjugated to the polymeric brush using a flexible linker. The brush permits passage of the nanoparticles through cell membranes, and prevents
PDF
Album
Review
Published 19 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • not exert their antibacterial effects in a single specific location, but rather at several levels (e.g., in the bacterial wall and by blocking electron transfer, in cell respiration and replication due to the damage to the proteins, RNA, and DNA [8][107]). In addition, there is substantial evidence
  • oxidative changes in the internal structure of cellular proteins, RNA, and DNA leading to redox changes, which in extreme conditions can lead to cell death by apoptosis [11][23][108]. Wakshlak et al. presented a new action mechanism of silver, called the "zombie effect". The AgNPs interact with the cellular
  • components of the dead bacteria (i.e., RNA, polysaccharides, phospholipids, proteins, and DNA,) and are stabilized and capped by the genetic material of the bacteria (AgNPs–bac). According to the Le Chatelier’s principle, AgNPs are redirected to live bacteria with a higher potential for lethality according
PDF
Album
Supp Info
Review
Published 14 May 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • toxicity and lack of efficacy (resistance). Nevertheless, the application of cytotoxic chemotherapeutics (e.g., daunorubicin and cytarabine), with or without HSCT, still remains the backbone of treatment for AML [6][7]. All chemotherapy agents interfere somehow with the DNA replication process or with cell
  • mitosis. Anthracyclines (such as daunorubicin) interfere with topoisomerase II and inhibit DNA replication and histone activity. Alkylating agents (such as cyclophosphamide) introduce inter- and intrastrand cross-linkages and breaks in the DNA. Antimetabolites (such as 5-fluorouracil) obstruct the
  • synthesis of nucleic acids required for DNA replication, while taxanes and vinca alkaloids interfere with the polymerization/depolymerization of the microtubules thus inhibiting mitosis [8]. However, in addition to cancer cells, all of these drugs also affect the normal/healthy tissues with cells that
PDF
Album
Review
Published 29 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • doxorubicin (DOX) is extensively used in the management of different tumors [7] and exerts antitumor activity by interaction with DNA replication [8]. DOX-based chemotherapy is one of the main treatments for HCC but its efficacy is limited by pre-existing and acquired drug resistance due to long-term
  • , such as DOX [18]. Advanced synergistic therapies, such as the combination of chemotherapy and photothermal therapy, have been applied to enhance the overall therapeutic efficacy [19]. This includes magnetic cores capped with gold nanorods, silica nanorattle gold shells, and DNA-based platforms loaded
  • DOX [35]. Similarly, a study showed an improved toxicity of DOX-loaded DNA-wrapped gold nanoparticles in drug-resistant cancer cells [36]. Our results are opposite to this study, it might be due to the higher sensitivity of HepG2 cells to DOX, which could induce more toxicity of free drug compared to
PDF
Album
Full Research Paper
Published 31 Mar 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • in the midgut and imaginal disc tissues following an exposure of the fruit fly larvae to TiO2 NPs. TiO2 NPs did not influence the wing spot assay of the fruit fly; however, a significant increase in DNA damage was recorded when compared to the DNA damage caused by bulk TiO2. Panacek et al. [44
  • concentrations of Ag NPs [122]. Reactive oxygen species (ROS), which are involved in cell signaling and homeostasis [123], are considered a characteristic side-effect of oxygen metabolism. High levels of ROS in living organisms induce oxidative stress, which results in damage to the DNA, proteins, and lipids
  • NPs increased production levels of ROS, which resulted in cell apoptosis, necrosis, and DNA damage [132]. This mortality rate was higher when compared to silkworm groups fed with 1 and 10 ppm of Ag NPs. These results are in accordance with studies carried out by Meng et al., who stated that although
PDF
Album
Review
Published 12 Feb 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • synthesis phase (S), in which the DNA is replicated; and the second gap phase (G2), in which the cell continues to grow further and to perform processes that are necessary for mitosis [74]. Both silica-coated samples show a significant increase in the G0/G1 phase compared to control cells (not treated with
  • until analysis. At the time of analysis, cells were centrifuged at 300g for 5 min, resuspended in PBS, and filtered through a 50 µm nylon mesh to separate aggregates. Cells were then incubated with 50 µL of propidium iodide (1 mg/mL), a DNA intercalating fluorochrome, and 50 µL of RNase (1 mg/mL) for 20
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
PDF
Album
Review
Published 04 Jan 2021

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • sufficiently studied in cardiomyocytes. The aim of this study was to determine how hydroxyapatite (HAp) nanoparticles contribute to the delivery of plasmid DNA (pDNA) into cardiomyocytes. We fabricated HAp nanoparticles using the water-in-oil (W/O) emulsion method and used these nanoparticles as the delivery
  • medical and dental applications, such as dental implants, orthopedics, and drug delivery systems, since it has similar elements found in bone and teeth. In addition, CaP stabilizes the nucleic acid against nuclease degradation, forms ionic interactions with the phosphates of DNA, and its biodegradation is
  • pH-sensitive [7][8][9]. Besides, CaP can be internalized in targeting cells though the endocytic pathway. Later on, CaP is dissolved in the endosome under acidic conditions, which contributes to the DNA release into the cytosol before the endosome–lysosome fusion. Although there are a number of
PDF
Album
Full Research Paper
Published 05 Nov 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • ][132]. When the size of titanium dioxide is reduced to the nanoscale (TiO2 NPs), its photocatalytic property is greatly improved, generating more reactive oxygen species (ROS). ROS damages bacterial cells, DNA chains, and other cellular structures through oxidative stress. Therefore, the use of TiO2
  • production and clearance of ROS in cells are balanced by those enzymatic systems. Nevertheless, when these reactive species are in excess, a set of redox reactions can lead to cell death by the alteration of different essential structures (such as cell membrane, DNA, proteins, and electron transport chain
  • ]. Silver, gold, zinc oxide, and titanium dioxide NPs can be attracted to the cell wall by electrostatic attraction [161], van der Waals forces [162], and hydrophobic interactions [163], inducing changes in the shape, function and permeability of the cells. Proteins and DNA Proteins play a fundamental role
PDF
Album
Review
Published 25 Sep 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • the feedback-loop frequency for three different sizes of colloidal beads with the same Soret coefficient (, ST = 0.6) and a 1000 base pairs long DNA molecule (D = 8 µm2/s, ST = 0.3). As expected, a smaller size (i.e., larger diffusion constant) of the particles/molecules or a smaller value of ST
  • video is available as Supporting Information File 2). It can be easily imagined that instead of the nanoparticles also two fluorescently labeled molecules could be manipulated. Braun et al. [30] demonstrated the trapping of two λ-DNA molecules inside a specially designed thermophoretic trap structure
  • stiffness as a function of the feedback loop frequency for different particles: beads with a diameter of 1000, 200, and 50 nm (all with the same ST) and a 1000 base pairs long DNA molecule. Example of a tailored nanoparticle trap. Preset feedback rules result in a creation of a 20 × 10 μm2 potential well
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • reactive oxygen species, ROS, which can potentiate direct damage to DNA and proteins, and induce lipid peroxidation) [24][56]. It was also shown that histidine–proline-rich glycoproteins with high molecular weight, e.g., kininogen and plasma prekallikrein, from blood serum attach strongly to the surface of
  • ) and very large (more than 200 nm) SPIONs are to be considered dangerous for the human organism, and that the intermediate range from 30 to 50 nm should be used for nanomedicine [68]. Very small nanoparticles can easily enter a cell nucleus inducing DNA damage [69], and some authors emphasize that
PDF
Album
Review
Published 27 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • possess many of the important qualities required for the functionalization of SERS sensors [18][19][20][21]. Aptamers are single-stranded DNA molecules that are specifically selected to bind to a target molecule. They are relatively cheap and their chemistry is easy to tune so that they can attach to a
  • aptamers is that their Raman fingerprint is easily recognizable, as DNA is an extensively studied molecule. In this study, we focus on the detection of E2 with an aptamer-functionalized sensor. E2 is the main female hormone responsible for growth, reproduction, breast development, maturation, bone
  • . MCH occupies gold sites that are not functionalized with the aptamer (Figure 1). This prevents the deposition of unwanted molecules from the sample, which could blur the signal. It also prevents the amine groups of DNA to form weak bonds with the gold and it helps the aptamer to have a homogeneous
PDF
Album
Full Research Paper
Published 14 Jul 2020
Other Beilstein-Institut Open Science Activities