Search results

Search for "Raman" in Full Text gives 458 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • , HIM and Raman spectroscopy were performed on the samples after the EFTEM experiments. The SE image in Figure 7b shows that membrane turned brighter in the areas previously imaged with EFTEM, which is indicative of a higher electric conductivity, as demonstrated in the following. In Figure 7c, a Raman
  • ). After the area was exposed to the beam for 3 min, the area turned conductive as the bright signal in SE imaging indicates. (c) Raman measurement on the indicated area in (b) and a reference spectrum of a freestanding, non-irradiated area on the same sample. After irradiation the photoluminescence
PDF
Album
Full Research Paper
Published 26 Feb 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • layer and PDMS as the negative friction layer. The modified CNTs embedded into a thin layer of PANI by the TENG electrochemical system showed a larger diameter compared with the pristine CNTs, as shown in Figure 10b. The electropolymerization of PANI on a CNT electrode is also identified by the Raman
PDF
Album
Review
Published 01 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • resonance (SPR) and generally have a broad absorption spectrum [83]. This enables applications in optoelectronics and surface-enhanced Raman scattering [84][85]. AgNPs were also applied effectively in solar cell matrices [32][86][87]. AgNPs can enhance the current density in solar cells due to their far
PDF
Album
Review
Published 25 Jan 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • measurements are easier to implement, since no additional sample preparation is necessary [20]. There is a number of AFM-based methods, such as tip-enhanced Raman spectroscopy (TERS) [21], AFM-based infrared spectroscopy (AFM-IR) [16][22], noncontact AFM (ncAFM ) [23][24], chemical AFM (cAFM) [25][26], and
  • include additional Raman and IR instrumentation, respectively. The effort to perform TERS or AFM-IR experiments is only justified if a detailed analysis of the chemical structure is needed. In this study, however, we aim to identify the material contrast which is provided by more accessible in situ
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • environment of the lattice atoms and defects. With the aid of advanced characterization techniques one may get valuable information on site symmetry, atomic bonding, and, in particular, on the bandgap energy of semiconductors. Raman, photoluminescence (PL), UV–vis, and electron paramagnetic resonance (EPR
  • the existence of the defects. Owing to the extreme sensitivity of EPR spectroscopy (1011 spins/g) to paramagnetically active defect centers, one may correlate the information on the local electronic configuration from EPR spectra with Raman and PL spectra. Thus, when such semiconductor materials are
  • , which is expected due to the quantum confinement effect [13]. Another crucially important optical characterization technique for the investigation of defects is Raman spectroscopy. The phonon vibration modes are highly sensitive to the existence of point defects, which are reflected in distinct spectral
PDF
Album
Review
Published 13 Jan 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • [16][24][25]. It is also in agreement with the Raman characterization detailed below. The SEM analysis reveals that the peeled-off layers are C1/N2 sections detached from another supporting C3/N4 MWCNT layer. This implies that only a few layers of MWCNTs are disconnected from the forest. Such peeling
  • , there is a wavy, a straight, and another wavy section. This sequential changes in the morphology is in agreement with the synthesis sequence used. The interface between the expected N2 and C3 sections is marked by a brighter line. Raman spectra of undoped MWCNTs and nitrogen-doped MWCNTs are
  • (relative to the D peak intensity) and the presence of a 2D peak indicate a more graphitized MWCNT. Conveniently, the structures obtained here have sections that are long enough (>10 μm) to be unambiguously focused by a Raman laser, using the optical lens of a Raman microscope [16]. Typical Raman spectra
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • thickness range. In contrast, tip-enhanced Raman spectroscopy measurements on edges in folded graphene flakes, 14 layers thick, show no significant strain. This indicates that layers in graphene flakes, up to 5 nm thick, can still slip to relieve stress, showing the richness of the effect in 2D systems. The
  • methods; atomic force microscopy (AFM); molecular dynamics (MD); Raman spectroscopy; nanostructured materials; Introduction Layered materials such as graphite, talc, and transition metal dichalcogenides (TMDs), held together by strong covalent bonds within layers and relatively weak van der Waals
  • any 2D material and not restricted to talc. This hypothesis was investigated employing a near-field tip-enhanced Raman spectroscopy (TERS) setup [36][37] that can probe strain variations across the edge of a folded graphene flake of 5 nm thickness (see Supporting Information File 1, section “Near
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • organic molecule 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) from the supporting Cu(111) surface by Raman and fluorescence (FL) spectroscopy. The Raman fingerprint-type spectrum of PTCDA served as a monitor for the presence of molecules on the surface. Several broad and weak FL lines between
  • -perylene tetracarboxylic dianhydride (PTCDA); Raman spectroscopy; Introduction In recent years, two-dimensional materials (2DMs) have been established as a highly interesting field of studies, both in regard to their fundamental physical properties as well as their potential for technical applications [1
  • the Cu(111) substrate. In this contribution, we will discuss Raman modes and several different FL lines of PTCDA that were observed on both hBN/Cu(111) and Cu(111). For an effective comparison, the structures and the growth modes of the PTCDA layers are relevant. Details of the structural
PDF
Album
Full Research Paper
Published 03 Nov 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • with a monoclinic structure and that crystallinity of the nanoparticles was improved after adding CTAB. Raman studies revealed the presence of peaks related to Ag–S bonds (Ag modes) and the longitudinal optical phonon 2LO mode. Scanning electron microscopy investigations confirmed the production of
  • , Shimadzu) was employed to estimate the chemical composition of the Ag2S NPs. The morphology and size of the nanocrystals were examined via transmission electron microscopy (TEM; EM208, Philips). Raman spectroscopy was performed on colloidal Ag2S and thiourea solution using a Raman spectrometer (Bruker
  • reported data [24]. Figure 4 shows the Raman spectra of Ag2S NPs synthesized in Tu solution with and without CTAB. Four vibration modes were assigned to Ag2S. The peaks at 45 and 65 cm−1 are related to Ag–S bonds (Ag modes) [25]. The third peak at 480 cm−1 was indexed to the longitudinal optical phonon 2LO
PDF
Album
Full Research Paper
Published 21 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • electrochemical method, three-dimensional arrayed nanopore structures are machined onto a Mg surface. The structured Mg surface is coated with a thin gold (Au) film, which is used as a surface-enhanced Raman scattering (SERS) substrate. A rhodamine 6G (R6G) probe molecule is used as the detection agent for the
  • SERS measurement. Different sizes of arrayed micro/nanostructures are fabricated by different treatment time using the electrochemical process. The topographies of these micro/nanostructures and the thickness of the Au film have an influence on the Raman intensity of the Mg substrate. Furthermore, when
  • the thickness of Au film coating is held constant, the Raman intensity on the structured Mg substrates is about five times higher after a treatment time of 1 min when compared with other treatment times. The SERS enhancement factor ranges from 106 to 1.75 × 107 under these experimental conditions
PDF
Album
Full Research Paper
Published 16 Oct 2020

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • , Germany 10.3762/bjnano.11.136 Keywords: active plasmonics; electrically driven nanoantenna; gap antenna; nanoantenna; nanofabrication; nanospectroscopy; nano-photonics; optical antenna; second harmonic generation; sensing; scanning tip; surface-enhanced infrared absorption (SEIRA); surface-enhanced Raman
  • spectroscopy (SERS); tip-enhanced Raman spectroscopy (TERS); tunnel junction; Editorial Optical antennas + serve to confine the energy of photons transported by a light wave to a tiny volume much smaller than the wavelength; or reversely, to convert the energy of an evanescent field that oscillates at optical
  • configurations with increasing control over their optical performance [1][2][3][4]. The strong local near-field enhancement by plasmonic nanoantennas is being harnessed for high sensitivity, high-resolution optical nanospectroscopy techniques [5], such as surface-enhanced or tip-enhanced Raman spectroscopy (SERS
PDF
Editorial
Published 07 Oct 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • amorphous layer (Ar/H2 ≈59, Figure 4d, right panel). Raman spectroscopy was performed to determine the quality (defect density, defect type, and hybridization) of the deposited Pt/CNW layers. All samples produced at sufficiently high pressures and low carrier gas flow rates exhibit the typical spectrum
  • indicates 100% sp²-hybridization [31]. No peaks are found for the Pt-NPs in the investigated wavenumber region, which is supported by a study of Kimata et al. [32]. A more detailed evaluation of the Raman data can be found in Supporting Information File 1. Controlling the physical properties of the active
  • Information File 1). Characterization The morphology of the resulting samples was investigated using a scanning electron microscope (SEM; Inspect F and Helios 600 NanoLab DualBeam, FEI Deutschland GmbH). Raman spectroscopy was performed with green laser excitation (532 nm) in a Renishaw confocal inVia Raman
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • the ligands. Raman and FTIR spectroscopy measurements showed that glutamate and aspartate salts were adsorbed at the surface of γ-Fe2O3 nanoparticles [20]. It should be noted that the methodological protocol of above experiments on glutamate and aspartate chemisorption suggested the use of bio
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • synthesized material were investigated using electron diffraction, Raman spectroscopy, and transmission electron microscopy. It was shown that the morphology of the reaction product strongly depends on the amount of OH− ions in the reaction mixture, varying from Fe3O4 nanorods to spherical Fe3O4 nanoparticles
  • reference sample (20–50 nm). It is well known that distinguishing between magnetite (Fe3O4) and maghemite (γ-Fe2O3) only using the diffraction technique is not straightforward. However, these samples can be easily distinguished by Raman scattering, since Fe3O4, γ-Fe2O3 and other iron oxides and hydroxides
  • have very different vibrational bands [46][47]. The Raman spectrum of the sample synthesized at R = 2.1 is shown in Figure 6 (blue curve). The data shows that the main band (672 cm−1) coincides with the main vibrational mode of magnetite (A1g) [48][49], thus proving that Fe3O4 nanoparticles were
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • (002) reflection of the HTs corresponds to large interlayer distances in the range of 0.4 nm, while the RF carbons show d-spacings of 0.43 and 0.39 nm. Raman spectra of HT2 shows the G band peak at ca. 1590 cm−1 and in addition the D band peak at ca. 1340 cm−1, which is further pointing to a disordered
  • carbonized at 1000 or 1600 °C for 2 h in a stream of argon gas (1 L min−1). The carbon samples derived from RF gels (RF carbons) were labeled with the carbonization temperature, namely RF-1000 and RF-1600. Characterization Powder X-ray diffraction (XRD) measurements and Raman spectroscopy were employed to
  • confirm that the samples had an amorphous carbon structure, using an X-ray diffractometer (X'Pert Pro, PANalytical, Netherlands, using Cu Kα radiation with a generator voltage of 45 kV and a tube current of 40 mA) and a Raman spectrometer (Jubin-Yvon iHR550, HORIBA, Japan, equipped with a Laser Quantum
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • , Germany 10.3762/bjnano.11.99 Abstract Tip-enhanced Raman spectroscopy is combined with polarization angle-resolved spectroscopy to investigate the nanometer-scale structural properties of core–shell silicon nanowires (crystalline Si core and amorphous Si shell), which were synthesized by platinum
  • of the Raman peaks of crystalline Si and amorphous Si by applying tip-enhanced Raman spectroscopy, at sample positions being 8 nm apart. The local crystallinity revealed using confocal Raman spectroscopy and tip-enhanced Raman spectroscopy agrees well with the high-resolution transmission electron
  • microscopy images. Additionally, the polarizations of Raman scattering and the photoluminescence signal from the tip–sample nanogap are explored by combining polarization angle-resolved emission spectroscopy with tip-enhanced optical spectroscopy. Our work demonstrates the significant potential of resolving
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • nanoparticles) were developed to rapidly detect and inhibit pathogenic microorganisms [59]. By using the label-free surface-enhanced Raman spectroscopy technique, the authors demonstrated that the optical fingerprints can be used to sense bacterial cell molecular structures and to promote recyclable
PDF
Album
Review
Published 31 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • microscopy (EM), iron oxide magnetic beads for the separation of cells and molecules, gold and silver nanoparticles as fiducials for EM, for immuno-EM labeling and surface-enhanced Raman spectroscopy, or for gene transfection, liposomes for drug delivery, and gadolinium or iron oxide nanoparticles for
PDF
Album
Review
Published 27 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • nanomaterial in water. The Raman spectra of the hybrid nanomaterial, Ce6 and graphite are shown in Figure 1b for comparison. The highest peak, corresponding to the G band (≈1580 cm−1), was used to normalize the signals in each case. The 2D band (≈2715 cm−1) gives information about π–π stacking which only
  • occurs in graphite. The intensity of the 2D band is reduced in the FLG-Ce6 hybrid nanomaterial due to the interaction between FLG and Ce6 π-electrons. Finally, the D band (≈1350 cm−1) is not present in the Raman spectrum of pristine graphite as it gives information about the in-plane defects of the
  • graphene lattice. In the Raman spectrum of the FLG-Ce6 hybrid nanomaterial, the D band is overshadowed by the Raman signals of Ce6. Figure 1c shows the X-ray photoelectron spectroscopy (XPS) spectra of the hybrid nanomaterial and Ce6. The O 1s core level spectrum of the hybrid nanomaterial FLG-Ce6 is
PDF
Album
Full Research Paper
Published 17 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • -enhanced Raman scattering (SERS) sensors for the detection of 17β-estradiol. Gold deposition on top of a TiO2 surface leads to the formation of nanoparticles the plasmonic properties of which fulfil the requirements of a SERS sensor. The morphological and optical properties of the surface were investigated
  • -estradiol, an emerging contaminant in environmental waters. We have found a limit of detection of 1 nM with a sensitivity allowing for a dynamic range of five orders of magnitude (up to 100 µM). Keywords: aptamer; Au nanoparticles; 17-β estradiol (E2); plasmonics; sensor; surface-enhanced Raman scattering
  • (SERS); TiO2 nanostructures; Introduction Surface-enhanced Raman scattering (SERS) as a sensing tool requires the optimization of a surface and its functionalization. The surface should provide a good enhancement over a large range of wavelengths, to detect molecules with various fingerprints, while it
PDF
Album
Full Research Paper
Published 14 Jul 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • , the results showed that films are deposited with wurtzite structure as the dominant phase even after phase segregation in the investigated Mg concentration interval. The issue of phase segregation was also investigated via selective resonant Raman scattering in a wider composition range of x = 0.00
  • about 400 meV. One can see from Figure 4 and Figure 5 that narrow emission lines related to resonance Raman scattering (RRS) are present in the emission spectrum from the ZnMgO films in addition to the broad PL bands, which is indicative of the high optical properties of the films produced by sol–gel
  • summarized PL band maximum in Zn1−xMgxO films. The conditions of resonance Raman scattering in ZnMgO films for various compositions and temperatures. Funding The following sources of funding are acknowledged: National Agency for Research and Development of the Republic of Moldova (Grant No
PDF
Album
Full Research Paper
Published 12 Jun 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • International B.V., P.O. Box 456, 7500 AL, Enschede, Netherlands 10.3762/bjnano.11.68 Abstract We realized integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy of particles in a fluid. In these devices, multiple beams directed towards the device center lead to a local field
  • the influence of surfaces. We report the design (including simulations), fabrication and performance demonstration for multi-waveguide devices, using our Si3N4 waveguiding platform as the basis. The designed ridge waveguides, optimized for trapping and Raman spectroscopy, emit narrow beams. Multiple
  • focused Gaussian beam traps and are confirmed by our own simulations. The Raman spectra of the beads (in this work measured via an objective) show clear peaks that are characteristic of polystyrene. In the low-wavenumber range, the spectra have a background that most likely originates from the Si3N4
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • K. Priya Madhuri Abhay A. Sagade Pralay K. Santra Neena S. John Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru 560 013, India Laboratory for Advanced Nanoelectronic Devices, Sir C. V. Raman Research Park, Department of Physics & Nanotechnology, SRM Institute of Science and
  • of PbPc on graphene revealing interconnected highly conducting domains. Results and Discussion The Raman spectrum of CVD-grown single-layer graphene transferred onto a SiO2/Si substrate (referred to as SLG/SiO2/Si hereafter) is presented in Figure 2. A sharp and strong peak at 2680 cm−1 corresponds
  • (111), Si and SiO2. Detailed studies using Raman spectroscopy and 2D-GIXRD show ordered monoclinic and triclinic moieties on HOPG and Si substrates, respectively, while the Au(111) surface gives rise to disordered fractions due to the absence of long-range ordering [9][26]. In the present study, the
PDF
Album
Full Research Paper
Published 19 May 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • of Electrical and Computer Engineering, University of Texas, El Paso, TX 79968, United States 10.3762/bjnano.11.63 Abstract Phonon dynamics is explored in mechanically exfoliated two-dimensional WSe2 using temperature-dependent and laser-power-dependent Raman and photoluminescence (PL) spectroscopy
  • . From this analysis, phonon lifetime in the Raman active modes and phonon concentration, as correlated to the energy parameter E0, were calculated as a function of the laser power, P, and substrate temperature, T. For monolayer WSe2, from the power dependence it was determined that the phonon lifetime
  • electronic, optoelectronic and thermoelectric devices in the future. Keywords: phonon concentration; phonon lifetime; Raman spectroscopy; thermal coefficients; Tungsten diselenide; two-dimensional material; Introduction Since the discovery of graphene, atomically thin two-dimensional layered materials have
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020
Other Beilstein-Institut Open Science Activities