Search results

Search for "SERS" in Full Text gives 102 result(s) in Beilstein Journal of Nanotechnology.

Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

  • Alexander G. Milekhin,
  • Nikolay A. Yeryukov,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Victor A. Gridchin,
  • Evgeniya S. Sheremet and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2015, 6, 749–754, doi:10.3762/bjnano.6.77

Graphical Abstract
  • nanocrystals (NCs) with a low areal density fabricated through the Langmuir–Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively). Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si
  • substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm−1. This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2
  • advantages of SERS and IERS and demonstrate stronger SERS enhancement allowing for the observation of Raman signals from CuS NCs with an ultra-low areal density. Keywords: copper sulfide (CuS) nanocrystals; interference-enhanced Raman spectroscopy; phonons; surface-enhanced Raman spectroscopy; Introduction
PDF
Album
Full Research Paper
Published 17 Mar 2015

Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation

  • Guoke Wei,
  • Jinliang Wang and
  • Yu Chen

Beilstein J. Nanotechnol. 2015, 6, 686–696, doi:10.3762/bjnano.6.69

Graphical Abstract
  • The enhancement factor (EF) of surface-enhanced Raman scattering (SERS) from two-dimensional (2D) hexagonal silver nanorod (AgNR) arrays were investigated in terms of electromagnetic (EM) mechanism by using the discrete dipole approximation (DDA) method. The dependence of EF on several parameters, i.e
  • nanoarrays and incident excitations will shine light on the optimal design of efficient SERS substrates and improved performance. Keywords: discrete dipole approximation (DDA); enhancement factor; near-field; silver nanorod array; surface-enhanced Raman scattering (SERS); Introduction Surface-enhanced
  • Raman scattering (SERS) has attracted substantial interest over the past decades due to its potential applications in biological sensing and chemical analysis with molecular specificity and ultrahigh sensitivity, which can be even down to the level of single molecules [1][2]. In addition, SERS can be a
PDF
Album
Full Research Paper
Published 09 Mar 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • (SERS) and are activated by a wide range of excitation wavelengths. The three-dimensional hollow nanoantennas were produced on an optical resist by a secondary electron lithography approach, generated by fast ion-beam milling on the polymer and then covered with silver in order to obtain plasmonic
  • functionalities. The optical properties of these structures have been studied through finite element analysis simulations that demonstrated the presence of broadband absorption and multiband enhancement due to the unusual geometry of the antennas. The enhancement was confirmed by SERS measurements, which showed a
  • field enhancement; plasmonics; Raman spectroscopy; SERS; Introduction Cells are extremely complex systems that consist of hundreds of different molecules that can react and give rise to many different chemical processes. In addition to the complexity of the cellular chemical environment, it must also
PDF
Album
Full Research Paper
Published 18 Feb 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • various CAWs synthesis techniques and strategies to improve stability. Finally we present Raman and SERS characterizations of selected CAW systems. Structure of carbon-atom wires The ideal model of sp-hybridized carbon wires is an infinite chain comprised of two different geometric arrangements of atoms
  • particularly insightful for the characterization of sp-carbon systems. For two cases (hydrogen- and phenyl-terminated polyynes) we will show that Raman spectroscopy allows the identification of CAWs of different lengths. Furthermore, by comparing Raman and SERS we will discuss the occurrence of charge transfer
  • between CAWs and metal nanoparticles used as the SERS active medium. Such charge transfer results in a change of the electronic configuration of the wire that evolves towards a more equalized structure (i.e., cumulenic). H-terminated polyynes were produced by the submerged arc discharge technique, as
PDF
Album
Review
Published 17 Feb 2015

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

  • Jes Ærøe Hyllested,
  • Marta Espina Palanco,
  • Nicolai Hagen,
  • Klaus Bo Mogensen and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2015, 6, 293–299, doi:10.3762/bjnano.6.27

Graphical Abstract
  • excitation. Keywords: fruits; green synthesis; luminescence; plants; plasmonics; SERS; silver cluster; silver nanoparticles; Introduction Metal nanoparticles in various size ranges play an increasingly important role in many different fields of science, technology and medicine ranging from applications as
  • enhanced Raman scattering (SERS). Extracts from these two fruits have been used for preparing silver and gold nanoparticles [12][15][16][17][18][19]. Here we explore the formation of nanoparticles by varying conditions in the preparation process such as ratios of the mixtures of silver nitrate and fruit
  • extracts and the presence or absence of light. Our studies focus on the preparation of nanoparticles between 10 and 100 nm, i.e., a size range which is of particular interest for plasmon-supported spectroscopy, such as SERS. The formation of silver nanoparticles and their growth is monitored by the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • [126]. However, one disadvantage is that only low signal intensities are emitted by biomolecules themselves [132]. Advanced Raman techniques, such as surface-enhanced Raman spectroscopy (SERS), coherent anti-Stokes Raman spectroscopy (CARS), and stimulated Raman spectroscopy (SRS) have been used in the
  • past along with microscopy approaches for studying biological matter along with nanoscopic systems [133][134][135][136]. Moreover, NP may be used as specific SERS-label which was coupled to the primary antibody for the immunohistochemical detection of proteins in tissue sections. Thus, it is possible
  • the image acquisition. However, enhanced signal intensities would be required for this [132]. To address these issues, more advanced Raman techniques, including CARS, SERS and SRS have been developed [140]. CARS imaging is faster compared to the spontaneous Raman microspectroscopy but special lasers
PDF
Album
Review
Published 23 Jan 2015

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • electromagnetic fields. These enhanced local electromagnetic fields of the different plasmonic structures have been applied to enhance optical transitions such as in Raman spectroscopy [12] (as surface enhanced Raman scattering – SERS) and fluorescence [13] (as surface enhanced fluorescence – SEF) where the
  • for enhancement of plasmonic sensing systems [2][4][21]. Nanocap-hole arrays are extremely simple coupled structures to produce based on colloidal lithography with the potential for use in sensing applications. They have recently been applied for SERS enhancement [22]. Here we focus on investigating
  • knowledge been previously reported. The coupling present in this simple to fabricate system can be used both to study dark SPP modes and/or for rational design of sensors through plasmon enhancement of optical processes (e.g., SERS or SEF) and/or engineering of the near field (lifting the SPP modes out of
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

SERS and DFT study of copper surfaces coated with corrosion inhibitor

  • Maurizio Muniz-Miranda,
  • Francesco Muniz-Miranda and
  • Stefano Caporali

Beilstein J. Nanotechnol. 2014, 5, 2489–2497, doi:10.3762/bjnano.5.258

Graphical Abstract
  • environmentally friendly agent. In this study, we have analyzed the adsorption of 1,2,4-triazole on copper by taking advantage of the surface-enhanced Raman scattering (SERS) effect, which highlights the vibrational features of organic ligand monolayers adhering to rough surfaces of some metals such as gold
  • , silver and copper. To ensure the necessary SERS activation, a roughening procedure was implemented on the copper substrates, resulting in nanoscale surface structures, as evidenced by microscopic investigation. To obtain sufficient information on the molecule–metal interaction and the formation of an
  • anticorrosive thin film, the SERS spectra were interpreted with the aid of theoretical calculations based on the density functional theory (DFT) approach. Keywords: copper corrosion; DFT; inhibitor film; 1,2,4-triazole; SERS; Introduction Copper has a long history in a variety of industrial uses due to its
PDF
Album
Full Research Paper
Published 29 Dec 2014

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • by the highly sensitive tracking of the surface enhanced Raman scattering (SERS) signal of single AgNP. Here, the penetration depth was found to be 19 ± 10 µm for intact skin, compared to 22 ± 5 µm for skin pre-treated with 20 tape stripes. This effect is well known for AgNP of this type and size [20
  • ]. Results obtained from SERS indicate that single AgNPs can penetrate deeply into the stratum corneum. The Raman and SERS spectra of porcine skin pre-treated with AgNP are shown in Figure 2a. The results illustrate that for AgNP, the SERS effect can be used to monitor the skin penetration depth of single
  • particles. Interestingly, pretreatment of skin with 20 tape strippings doubled the likelihood to detect a SERS effect. In these tape-stripped skin samples, the SERS effect was measured deep in the stratum corneum and in the stratum granulosum of the viable epidermis. This finding could indicate a deeper
PDF
Album
Full Research Paper
Published 08 Dec 2014

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • anti-Stokes Raman scattering (SE-CARS). They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman scattering (SERS) techniques, respectively, which are themselves a branching of the conventional IR and
  • scattering (SERS). Indeed, spontaneous Raman scattering possesses an intrinsically weak cross section, typically lower than one Raman photon over 1018 [3]. However, the paths of development of SEIRA and SERS have been rather different. The success of SEIRA remains uncertain because of the limited bandwidth
  • ][15][16]. Up to now, a very high molecular surface sensitivity has been reached with SERS (and to a lesser extent with SEIRA), offering incredible perspectives in various fields, especially in nano-biosciences [2] in which probing tissues at the molecular level has allowed for a deeper understanding
PDF
Album
Review
Published 28 Nov 2014

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • ]. This makes evident that the dephasing mechanisms can seriously limit the resonant scattering of the NP structure, which in turn determines the plasmonic enhancement of the electromagnetic field in the vicinity of the particles, and finally determines the application capability (e.g., for SERS (surface
  • , including those produced by other techniques such as ion beam lithography and colloidal synthesis [47]. Mid-field enhancement Measurements of the micro-Raman spectra and quantitative data on the SERS effect provide a reliable check of the sensing capability from the point of view of the ultrasensitive
  • detection based on the refractive index variations [18]. In the particular case of the self-organized NP arrays, such data are crucial for understanding the relation between the structure morphology, the near-field distribution of the optical signal due to the plasmonic resonance effect, the SERS signal
PDF
Album
Review
Published 13 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
PDF
Album
Review
Published 03 Nov 2014

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • performance, Pt NPs are used in fabricating super capacitors [35]. The Pt NPs in core–shell structures (Pt forms the shell) are used in surface enhanced Raman scattering (SERS) studies [36] as well. Moreover, Pt is relatively inert in atmosphere and ex situ characterization of irradiated samples can also be
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

  • Edwin J. Devid,
  • Paulo N. Martinho,
  • M. Venkata Kamalakar,
  • Úna Prendergast,
  • Christian Kübel,
  • Tibebe Lemma,
  • Jean-François Dayen,
  • Tia. E. Keyes,
  • Bernard Doudin,
  • Mario Ruben and
  • Sense Jan van der Molen

Beilstein J. Nanotechnol. 2014, 5, 1664–1674, doi:10.3762/bjnano.5.177

Graphical Abstract
  • results of the structural and spectroscopic characterisation of the synthesized 2D ligand-gold nanoparticle arrays (in short Au-NP–S-BPP-arrays), by means of UV-vis and electron microscopy (SEM, HRTEM and 3D TEM) experiments, will be presented. Specifically, surface enhanced Raman spectroscopy (SERS
  • excitation used here. Although there are clear commonalities, the spectra of the 2D single layer array and SAc-BPP powder spectra exhibit notable differences. The individual spectral features are broader in the SERS spectrum, consistent with the higher heterogeneity in the microenvironment the S-BPP
  • molecules experienced in the array compared to the powder. Furthermore, the SERS spectrum is less complex than that of the powder. This is consistent with plasmonic enhancement as the vibrational modes involving the atoms closest to the gold nanoparticle will be selectively enhanced. Whereas the low
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • including UV lasers [1], field effect transistors [2], dye sensitized solar cells [3][4], surface enhanced Raman spectroscopy (SERS) [5] and biomedical applications [6][7][8][9][10]. ZnO nanostructures are promising photocatalysts because of their high quantum efficiency, high redox potential, superior
PDF
Album
Full Research Paper
Published 15 May 2014

Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials

  • Jun Zhao,
  • Bettina Frank,
  • Frank Neubrech,
  • Chunjie Zhang,
  • Paul V. Braun and
  • Harald Giessen

Beilstein J. Nanotechnol. 2014, 5, 577–586, doi:10.3762/bjnano.5.68

Graphical Abstract
  • Beilstein TV. Keywords: hole-mask colloidal nanolithography; localized surface plasmon resonance sensing; low-cost large-area plasmonic nanostructures; multilayer fabrication; surface-enhanced infrared absorption spectroscopy (SERS); Introduction Optics with metallic nanostructures has generated keen
  • surface-enhanced Raman scattering (SERS), in particular when the particle plasmon resonance was tuned to the pump laser wavelength. Novel applications such as coupling of plasmons to atomic gases are on the horizon [14]. Most of these fundamental effects as well as the early applications have been
  • 2-shape sample, we can combine different applications in the IR and visible range, for example to carry out simultaneous SEIRA and SERS measurements [36]. Figure 4h depicts a 3D left-handed chiral SRR structure with different widths and thicknesses of the two opposite ends [37]. The average radius
PDF
Album
Video
Full Research Paper
Published 06 May 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • ]. Furthermore, it is well reported that AuNRs are often used for surface enhanced Raman spectroscopy (SERS) biosensing applications. This is based on the observation that a gold rod-like particle has a higher electric field at both ends of the rod [10][11] where it is particularly useful for enhancing the
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • ” with a length of a few nanometers. This effect of strong near-field enhancement around sharp structures of noble metals has been known from Surface Enhanced Raman Scattering (SERS) for a long time [1]. Yet, the well-controlled tailoring of nanostructures necessary to quantitatively control the optical
  • near-field has only emerged a few years ago. In this issue, Katrin and Harald Kneipp [2] address in their contribution the possibility to probe the plasmonic near-fields by one- and two-photon excited surface enhanced Raman scattering at the level of single molecules. In addition to SERS, there are
PDF
Editorial
Published 19 Feb 2014

Synthesis of embedded Au nanostructures by ion irradiation: influence of ion induced viscous flow and sputtering

  • Udai B. Singh,
  • D. C. Agarwal,
  • S. A. Khan,
  • S. Mohapatra,
  • H. Amekura,
  • D. P. Datta,
  • Ajay Kumar,
  • R. K. Choudhury,
  • T. K. Chan,
  • Thomas Osipowicz and
  • D. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 105–110, doi:10.3762/bjnano.5.10

Graphical Abstract
  • nanostructures that are embedded near the surface. These embedded Au nanostructures have great potential for the application as substrates for surface enhanced Raman spectroscopy (SERS). Such a SERS substrate is expected to be reusable due to the embedded nanostructures. TRIDYN [20][21], a binary-collision Monte
PDF
Album
Full Research Paper
Published 29 Jan 2014

Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering

  • Katrin Kneipp and
  • Harald Kneipp

Beilstein J. Nanotechnol. 2013, 4, 834–842, doi:10.3762/bjnano.4.94

Graphical Abstract
  • . Keywords: near-field; plasmonics; silver nanoaggregates; single molecule; surface-enhanced Raman scattering (SERS); Introduction The resonance frequencies of collective oscillations of the electrons in the conduction band in metal nanostructures, which are called surface plasmons, fall in the optical
  • such plasmonic structures [1][2]. Exploiting these optical near-fields opens up exciting new capabilities for photon-driven processes and particularly for optical spectroscopy. Surface-enhanced Raman scattering (SERS) might be one of the most prominent effects to demonstrate the potential of
  • spectroscopy performed in the near-field. SERS enables Raman measurements on a single molecule [3]. Vice versa, here we show that single molecules and their Raman signatures can be useful tools for probing plasmonic near-fields. The measurement of Raman signals from single molecules requires high optical field
PDF
Album
Full Research Paper
Published 02 Dec 2013

Assessing the plasmonics of gold nano-triangles with higher order laser modes

  • Laura E. Hennemann,
  • Andreas Kolloch,
  • Andreas Kern,
  • Josip Mihaljevic,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2012, 3, 674–683, doi:10.3762/bjnano.3.77

Graphical Abstract
  • thirdly with the employed substrate. Moreover, we obtained strongly enhanced Raman spectra of an adenine (sub-)monolayer on gold Fischer patterns on glass. We thus showed that gold Fischer patterns are promising surface-enhanced Raman scattering (SERS) substrates. Keywords: Fischer pattern; higher order
  • arrays are long known to yield particle-enhanced Raman spectra [13][14][15]. Hence, there have also been several works [16][17][18] using the near field of Fischer patterns for surface-enhanced Raman scattering (SERS [19][20]). However, to our knowledge, no investigations of Fischer patterns by higher
  • polystyrene spheres of different diameters. For the SERS investigations, we prepared a solution of 10−6 M adenine (Sigma-Aldrich) in triple distilled water. A 30 µL droplet was then put on the sample and after one hour of incubation gently soaked off with a lint-free tissue without touching the surface
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2012

The morphology of silver nanoparticles prepared by enzyme-induced reduction

  • Henrik Schneidewind,
  • Thomas Schüler,
  • Katharina K. Strelau,
  • Karina Weber,
  • Dana Cialla,
  • Marco Diegel,
  • Roland Mattheis,
  • Andreas Berger,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2012, 3, 404–414, doi:10.3762/bjnano.3.47

Graphical Abstract
  • silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the
  • silver nanoparticles are shown as an exemplary application for quantitative analysis. Keywords: EGNP; enzymatically grown silver nanoparticles; enzyme-induced deposition; nanoflower; SERS; Introduction The application of metal nanoparticles in the field of bioanalytics extends the possibilities of
  • . Consequently, these nanostructures enable the realization of spectroscopic detection schemes, such as surface-enhanced Raman spectroscopy (SERS) [21]. The SERS activity of these enzymatically grown metallic nanostructures has been characterized with the help of a simple conductivity measurement [7]. Of course
PDF
Album
Full Research Paper
Published 18 May 2012

Distinction of nucleobases – a tip-enhanced Raman approach

  • Regina Treffer,
  • Xiumei Lin,
  • Elena Bailo,
  • Tanja Deckert-Gaudig and
  • Volker Deckert

Beilstein J. Nanotechnol. 2011, 2, 628–637, doi:10.3762/bjnano.2.66

Graphical Abstract
  • a sequencing procedure with TERS is the fact that the four nucleobases reveal remarkably different Raman scattering cross sections. It was shown that in SERS experiments on an equimolar mixture of the bases, the intensities of the ring breathing modes of the distinct bases are as follows: Poly
  • -adenine > poly-cytosine >> poly-guanine > poly-thymine [24]. Furthermore, in a comparison of the SERS spectra of two DNA molecules with different adenine contents (15.5% and 44.3%), the adenine signals dominated [25]. Hence it was predicted that signals from adenine only are likely to be detected when
  • assignment the spectral features were compared with those of SERS and Raman spectra of adenine derivates (deoxyadenosine (dA) [27], deoxyadenosine monophosphate (AMP) [28] and single stranded adenine homopolymer (poly(dA)) [29]). A comparison of TERS and SERS spectra of adenine (or any other molecule) must
PDF
Album
Full Research Paper
Published 23 Sep 2011

Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers

  • Johannes Stadler,
  • Thomas Schmid,
  • Lothar Opilik,
  • Phillip Kuhn,
  • Petra S. Dittrich and
  • Renato Zenobi

Beilstein J. Nanotechnol. 2011, 2, 509–515, doi:10.3762/bjnano.2.55

Graphical Abstract
  • molecular monolayers, an enhanced Raman technique is necessary to determine the chemical identity of the molecules. In surface-enhanced Raman spectroscopy (SERS) experiments (with a rough Ag film as a substrate, produced by vapor coating with randomly located enhancement hot-spots), the necessary
  • enhancement can in principle be reached. An attempt was made to visualize the distribution of molecules using SERS, but this did not yield satisfactory results. However, the large signal-to-noise ratio in every pixel of a TERS image allows one to obtain enough information to distinguish a full monolayer from
  • decomposition products (carbonaceous decomposition products usually scatter strongly) leads to the conclusion that the SAM was not destroyed by the high laser power, but that the intensity of Raman signals from the intact monolayer was too weak to be detected. In experiments on Ag SERS substrates (nominal
PDF
Album
Full Research Paper
Published 30 Aug 2011

Towards multiple readout application of plasmonic arrays

  • Dana Cialla,
  • Karina Weber,
  • René Böhme,
  • Uwe Hübner,
  • Henrik Schneidewind,
  • Matthias Zeisberger,
  • Roland Mattheis,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2011, 2, 501–508, doi:10.3762/bjnano.2.54

Graphical Abstract
  • , Albert-Einstein-Straße 9, 07745 Jena, Germany 10.3762/bjnano.2.54 Abstract In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of
  • fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is
  • article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics. Keywords: fluorescence; multiple
PDF
Album
Letter
Published 30 Aug 2011
Other Beilstein-Institut Open Science Activities