Search results

Search for "anticancer" in Full Text gives 82 result(s) in Beilstein Journal of Nanotechnology.

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • anticancer drugs and preserving their activity under biological conditions [81][82][83][84]. The affinity of NDs for protein adsorption has been finally utilised to separate recombinant proteins from Escherichia coli [85], resulting not only in a radically faster process than the commonly used purification
PDF
Album
Correction
Review
Published 23 Oct 2014

Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

  • Dickson Joseph,
  • Nisha Tyagi,
  • Christian Geckeler and
  • Kurt E.Geckeler

Beilstein J. Nanotechnol. 2014, 5, 1452–1462, doi:10.3762/bjnano.5.158

Graphical Abstract
  • AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles. Keywords: anticancer; cytotoxicity; gold Nanoparticles; pH
  • deaths in the modern world. Although significant advances in science and technology have given us a more comprehensive understanding of cancer, the diagnosis and treatment of cancer remain challenging. The inability of many anticancer drugs to reach the specific target sites and their common systemic
  • targeted drug and gene delivery [29][30][31]. Hence, MTT assays were used to study the cell viabilities of fibroblasts and cancer cells after treatment with AuNPs to check the cytotoxicity and the anticancer properties of the AuNPs for their future biomedical applications. Results and Discussion Synthesis
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2014

Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

  • Amanee D Salaam,
  • Patrick Hwang,
  • Roberus McIntosh,
  • Hadiyah N Green,
  • Ho-Wook Jun and
  • Derrick Dean

Beilstein J. Nanotechnol. 2014, 5, 937–945, doi:10.3762/bjnano.5.107

Graphical Abstract
  • current standard of care is chemotherapy, which involves the use of toxic anticancer drugs, like doxorubicin (DOX), to treat cancers by inducing apoptosis. DOX has had high success rates with treating prostate cancer [2]. However, it can cause major side effects such as hair loss, nausea [2][3], and
PDF
Album
Full Research Paper
Published 01 Jul 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • often been correlated to a poor therapeutic outcome, since HIF-1 could circumvent the anticancer drug effect by protecting cells from drug-induced apoptosis [12][13][14]. Moreover, tumor angiogenesis occurs partly by activating the expression of VEGF, which is partially regulated by HIF-1 [15][16][17
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014

Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

  • Shadab Ali Khan,
  • Sanjay Gambhir and
  • Absar Ahmad

Beilstein J. Nanotechnol. 2014, 5, 249–257, doi:10.3762/bjnano.5.27

Graphical Abstract
  • were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD
  • extended the work of biosynthesis of Gd2O3 nanoparticles to bioconjugation with taxol. Bioconjugation of taxol with gold and iron oxide nanoparticles has also been reported [15][16]. Taxol is one of the most important anticancer drugs used for breast, ovarian and lung cancers [17][18]. The potent
  • anticancer effect of taxol is mainly attributed to its mechanism of action. It stabilizes microtubules by preventing their depolymerization [19][20]. However, taxol is a hydrophobic drug and less specific to certain tumors due to its low solubility in water. To counter these problems, we carried out the
PDF
Album
Full Research Paper
Published 07 Mar 2014

En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

  • Slawomir Boncel,
  • Sebastian W. Pattinson,
  • Valérie Geiser,
  • Milo S. P. Shaffer and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2014, 5, 219–233, doi:10.3762/bjnano.5.24

Graphical Abstract
  • steerable drug carriers for the enhanced penetration of target cells in anticancer therapies [72][73]. Experimental Synthesis. The synthesis setup was composed of a pre-heater, a furnace, a quartz reaction tube, injection pump with a syringe, an inert gas flow-meter and an exhausts purifier. The pre-heater
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2014

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • is converted by carboxylesterase (predominantly in the liver) to its biologically active metabolite SN38 (7-ethyl-10-hydroxycamptothecin) [6][7][8][9]. Although CPT-11 had been approved as an anticancer agent by the US Food and Drug Administration (FDA) in 1997, the use of this prodrug is limited due
  • , severe side effects, such as life-threatening diarrhea and neutropenia, have been observed [14][15]. SN38 is a topoisomerase I inhibitor, and it has demonstrated 100- to 1000-fold more cytotoxicity against various cancer cells in vitro than CPT-11 [6]. Despite the excellent anticancer potential, SN38 has
  • not been used as an anticancer drug directly in humans due to its inherent poor solubility in any pharmaceutically acceptable media (solubility in water <5 µg/mL). To overcome this disadvantage of SN38, two major basic strategies have been developed. The first strategy is to directly introduce
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012
Other Beilstein-Institut Open Science Activities