Search results

Search for "defects" in Full Text gives 674 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • , associates of macromolecules are formed in the solution, and the influence of adhesion processes decreases, but the cohesive forces increase. In the entire thickness range from 3 nm to 1 µm, the films are solid, without significant defects and/or pin holes. The polymer films were studied by atomic force
  • microscopy (AFM) using an earlier described methodology [5]. The study of the film morphology showed that they are homogeneous, and within the entire thickness range from 3 nm to 1 µm the films are solid, without significant defects and/or pin holes. The observation confirms the good film-forming properties
  • thickness of the polymer or formation of multiple metallic dendrites. However, a number of microphotographs showed some defects in the form of shortcuts (Figure 2c). The origin of these artifacts is not entirely clear: they could be initially present in heterostructures, or they could have appeared during
PDF
Album
Full Research Paper
Published 19 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • non-smooth walls of the MWCNTs indicates the presence of defects such as vacancies, dangling bonds, interstitials, and pentagons [14]. Figure 3b shows the irregular shape of TiO2 particles smaller than 20 nm and their non-uniform distribution. In Figure 3c, some MWCNTs link with TiO2 clusters as
  • conjunctional bridges. TiO2 particles deposit only on the outside wall surface of the MWCNTs. Additionally, an agglomeration of TiO2 particles is only observed at the branching points, zigzag regions, and the end of MWCNTs where the defects are identified. However, the observation differs from previous studies
  • , in which the TiO2 particles are uniformly attached to CNTs by layer-by-layer coating or sol–gel methods [15][16][17]. Notably, the defects on the wall surface of MWCNTs, which enable π–π interactions, could be the active sites to generate the TiO2 agglomerations via hydroxy groups and, thus, enhance
PDF
Album
Full Research Paper
Published 14 Dec 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • the shell surface, through which additional diffusion takes place. Therefore, the surface should be compartmented to exclude the influence of these side surfaces. Furthermore, a subdivision of the air volume into small individual volumes ensures better stability, since individual defects only affect a
PDF
Album
Full Research Paper
Published 21 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • surface trap state defects [11][12]. In order to minimize the number of these defects, a wide-bandgap material, such as ZnS or ZnSe, is deposited on group I-III-VI QDs. Zhang et al. over coated a ZnS layer [13][14] on Cu-In-S and Cu-In-Se QDs to obtain highly efficient sensitizers for QDSCs. Hua Zhang et
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • , heterostructure formation, interface modification, and Bi-content enhancement, have been employed. Defect formation Vacancies and defects affect the electrical properties of Bi-based semiconductor photocatalysts and, hence, govern the photocatalytic efficacy. Rao et al. reported an N2-assisted heat treatment
  • vacancies in monolayered Bi2WO6 nanosheets with a thickness of 1.0 nm have recently been shown [82]. The Bi defects were shown to promote the adsorption and activation of reactant molecules, which reduced the energy barrier even more. The photocatalytic performance corroborated this. The presence of
  • and deposition and doping of metals and non-metallic elements are the most common doping methods. Metal ions modify the crystal structure of the Bi-based semiconductor photocatalysts or induce defects. Also, the photocatalytic properties may be altered by doping or deposition of metallic components
PDF
Album
Review
Published 11 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • ionization energy of the defects found on these nanostructures also favors the control of doping and, consequently, the electrical properties of the nanowires. These superior quality transport properties demonstrate the potential use of t-Te roll-like nanostructures for electronic device applications. (a–c
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • oxide with wide bandgap (3.5–5 eV), high availability, non-toxicity, low cost, and native structural defects [18][19]. The large bandgap energy is the limitation of MgO, reducing the photocatalytic performance and applicability of MgO [20]. Various efforts have been made to enhance the absorption in the
  • nm with an excitation wavelength (770 nm) in the visible range, which could be caused by the native structural defects in MgO [18]. 3% MgO@g-C3N4 shows intense fluorescence at 420 nm via excitation at 850 nm, due to the recombination of charge carriers. The photogenerated electrons from the valance
  • atoms [64][65][66]. Also, Liang and co-workers reported that the recombination of the e−–h+ pairs could be inhibited by doping MgO into g-C3N4 [32]. When MgO is added, the defect concentration increases and Mg and O vacancies are generated in MgO@g-C3N4. These defects work as the electron traps, which
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • . Surface passivation with different functional groups generates surface defects, which produces fluorescence and also generates new active sites for modification for specific applications. CDs can be chemically modified by many heteroatoms, including N, P, and S, and many other chemicals that increase
  • high QY because nitrogen atom doping helps to stabilize the surface defects of CDs and enhances fluorescence emission. Moreover, owing to its five valence electrons and an atomic size that is similar to carbon, nitrogen is a common dopant and the most frequently employed method of enhancing PL
  • contrast to nitrogen, phosphorus atoms are larger than carbon atoms. As a result, it has the potential to act as an n-type donor and create substitutional defects in the carbon cluster, changing the electronic and optical characteristics of CDs with great impact on polarizability, quantum yield, and
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • regenerate bone defects. Autografts are still considered the gold-standard method/material to treat bone-related issues with satisfactory outcomes. It is important that the material used for bone tissue repair is simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem
  • tissue engineering applications. Keywords: antibacterial activity; biomimetic materials; bone graft substitutes; chitosan; gold; osteoinductive; silver; Introduction Bone-related defects and diseases are a serious concern to the life of patients [1]. Autografts, allografts, and synthetic grafts are
  • frequently utilized by clinicians to treat bone defects. Bone grafts should have osteoconductive, osteoinductive, and osteogenic properties to mimic the natural function of the bone [2]. Autografts are considered the gold-standard bone graft substitute since it has all three properties previously mentioned
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • ][21][35]. However, pure phase MIL101(Fe), like most semiconductor photocatalysts, has inherent defects, such as low conductivity and high recombination efficiency of photogenerated electron–hole pairs [26][36]. To overcome these shortcomings, several strategies have been developed. One approach is to
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • simulation conditions used in this work, the adsorption of water favours the formation of defects in silicon by mixing hydrogen and oxygen atoms into the substrate. The sputtering yield of silicon is not significantly changed by the contamination, but the fraction of hydrogen and oxygen atoms that is
  • after receiving some energy from the incident argon ion, and only a small number of defects is formed. Water molecules are usually fragmented by an argon ion on the sample surface. The hydrogen and oxygen atoms are lighter than argon and are pushed deeper into the sample, globally increasing the damage
  • for more details). The 0.94 < µ < 1 interval describes a region where no defects are present. Changes in µ are due to variations in bond length coming from thermal vibrations around the equilibrium bond length. This region is crystalline. The 0.89 < µ < 0.94 interval describes regions that contain
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • [6][7][8][9][10] and theoretical [7][11][12][13] studies that investigated DMO showed the crucial role of intrinsic defects in determining the magnetic properties [14][15][16][17][18][19]. Among the DMO that have been investigated, transition metal-doped zirconia [20][21][22][23], a super-hard oxide
PDF
Album
Full Research Paper
Published 15 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • compact molecular film is crucial to obtain high-performance devices, since an efficient charge carrier transport is hindered by morphological defects, such as grain boundaries or pinholes [10][11]. Moreover, crystalline and well-ordered layers are particularly suitable for spatially averaging
PDF
Album
Full Research Paper
Published 30 Aug 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • thin and delicate structures (outgrowths of some lower platelets; see Figure 3e), which can readily brake. In this study, we observed such defects in the wax coverage in a few leaf samples, where upper wax platelets were absent and only the lower wax layer remained exposed (see Figure 2f). The coarsely
PDF
Album
Full Research Paper
Published 22 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • corresponding statistics in Figure 2d and Figure 2g, respectively, show that the I(D)/I(G) ratio is very low (down to 0.03), meaning that no or few defects could be detected. Figure 2e and Figure 2h show that over 95% of the sample has a ratio of I(2D)/I(G) > 1.6 (average of 2.1 ± 0.3) and a FWHM(2D) of 34.2
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • macromolecule to the matrix should, following our explanation, not show an effect on the elasticity of the particles as no “defects” in the network will be introduced. In line with this explanation, lysozyme-loaded GNPs exhibited a particle elasticity not significantly different from unloaded GNPs. Regarding
PDF
Album
Full Research Paper
Published 16 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • ]. There are several parameters of the single crystals, such as defects, hydrophilicity, and dispersity in water, that determine the performance of the composites in biomedicine [106][107]. To introduce more controllable and repeatable synthetic methods to tailor the parameters of monocrystalline
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • three weak peaks at 448, 479, and 490 nm, which are indexed to the recombination of photoinduced electron−hole pairs, freely excited electrons, surface defects, and oxygen vacancies on the band edges, respectively [36][61]. It is apparent that the PL intensities of the Bi2WO6/TiO2-NT nanocomposites at
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • composition of the electrolyte were optimized to increase the deoxygenation of the GO sheet during ERGO formation. Figure 1B depicts three significant Raman peaks of GO at 1350 cm−1 for the D band (associated with defects in the sp2 lattice), 1596 cm−1 for the G band (due to vibrations of the hexagonal
  • the electrolytic buffer during electrochemical reduction of GO. The highest value of ID/IG was found to be 1.454 for the conversion of ERGO using PBS (pH 4.5), which suggests the formation of higher defects between the graphene layers during electrochemical reduction [26][34]. Thus, 50 mM PBS, pH 4.5
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • lattice-plane indices Two octahedron layers spacing ≈3.7433 Å share corners to construct the brookite structure, as depicted in the inset of Figure 5b. The core–shell structure, defects, and twins in the brookite Considering the differences in the ionic radius and the electronegativity between Na and Ti
  • including the core–shell structure, the nanodomain, interstitial atoms, atomic vacancies, and complex defects can be frequently observed in the samples calcinated at 300 and 400 °C but rarely for other samples calcinated at higher temperatures. Since the higher calcinating temperature can improve the atomic
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • , valleytronics, and nonlinear optics [2][3][4][5][6][7][8]. Many interesting phenomena can be observed, mainly due to the presence of structural irregularities such as point defects, edges, boundaries, and the formation of contaminants in the process of 2D-TMDC growth [9][10][11][12][13]. These structural
  • photoluminescence spectroscopy. Owing to the larger population of charge carriers, the photoluminescence from these structural defects of monolayer WS2 originates from the biexcitons under high-power excitation [16]. Interestingly, tilt boundaries in monolayer MoS2 induce strong photoluminescence enhancement and
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • synthesis methods are discussed, highlighting low-cost methods and the recyclability of ZnO-based nanosubstrates. Also, the SERS signal enhancement by ZnO-based nanostructures and the influences of lattice defects on the SERS signal are described. The photoluminescence enhancement of ZnO in the presence of
  • a higher adsorption of analyte molecules, increasing the EF from 106 (before) to 108 (after hydrogenation) [43]. The charge transfer effect was probably increased as well since the hydrogenation introduced lattice defects that could alter the energy band structure of ZnO, promoting charge separation
  • development of composite semiconductor–noble metal-based substrates is desirable since they could be implemented as reusable, low-cost SERS substrates for ultrasensitive detection of analytes. ZnO lattice defects and doping ZnO nanostructures usually present two emission bands, namely a narrow UV band
PDF
Album
Review
Published 27 May 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • in a less dense but more ordered structure over a large area with very few defects. During the self-assembly process, gold adatoms are ejected from the surface layer due to the relaxation of the herringbone reconstruction [68]. Several gold adatom islands, which would build up if the density of
  • tilting or randomly moving some or all molecules and by either removing some of the atoms or whole molecules to, for example, mimic defects in the experimental process (randomization). (3) The electron irradiation was modeled by a vertical force gradient being applied to the atoms; it is linear and
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • different allotropes depending on the hybridizations of the C–C bond, that is, sp, sp2, or sp3. Furthermore, a variety of short-range ordering effects can interact with each other and this, along with the effects of microporosity, grain boundaries, and defects, render this a fascinating material. Following
  • glassy carbon microneedles Figure 4 shows a typical Raman spectrum of the glassy carbon microneedles. The D-band is at 1352 cm−1, and the G-band is at 1589 cm−1. The D-band, the so-called defect band, originates from a hybridized vibrational mode associated with local defects and disorder. In this case
PDF
Album
Full Research Paper
Published 19 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • made and offered hope for the treatment of degenerative diseases [3]. Articular cartilage defects were one of the first potential candidates for tissue engineering (TE) applications due to their anural and avascular integrity. Many efforts have been devoted to developing scaffolds with similar
  • osteochondral defects can be overcome by the versatile and efficient methods developed by TE technologies and will be discussed in detail. 3.1 Development of biomaterials using micro and nanostructures for cartilage TE Since Vacanti et al. reported the application of bioabsorbable artificial polymers as
  • growth factors and enables in situ spatial differentiation of MSCs to repair osteochondral defects [23]. It has been reported that microsphere-based structures could be efficiently used for gradient formation [24] and dual growth factor delivery [25]. Microspheres can be incorporated throughout the
PDF
Album
Review
Published 11 Apr 2022
Other Beilstein-Institut Open Science Activities