Search results

Search for "drug" in Full Text gives 424 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • ]. Praziquantel is a class II compound according to the biopharmaceutical classification system (BCS), so it has low solubility and high permeability in the gastrointestinal tract [6]. This drug is affected by the first-pass effect on the liver, which also impacts its bioavailability [6]. Unfortunately, this
  • nanocarriers to enhance drug delivery by ensuring that drugs are delivered in appropriate amounts to specific target areas and remains in the body for the necessary duration [12]. As a result, nanoparticles have been utilized mainly as drug delivery systems in various parasitic diseases, including
  • narrative reviews limited to a specific drug or nanoparticle categories. For instance, some reviews only focus on PZQ [14], while others solely showcase nanosystems for drug delivery [15]. Nonetheless, recent literature reveals several works that employ various drugs and utilize nanoparticles not only as
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • marker or drug nanocarrier. Three fluorescent PDA NPs were designed to allow for tracking in three different wavelength ranges by oxidizing BSA/PDA NPs (Ox-BSA/PDA NPs) or labelling with fluorescein 5-isothiocyanate (FITC-BSA/PDA NPs) or rhodamine B isothiocyanate (RhBITC-BSA/PDA NPs). FITC-BSA/PDA NPs
  • eukaryotic cells [1][2], or bacteria and biofilms [3][4]. As nanovectors of drugs, they can deliver drugs locally, leading to a more efficient drug activity. Also, the required doses and the drug impact on healthy tissues compared to the free drug are lowered. Regarding the dramatic emergence and spreading
  • of antimicrobial resistance of bacteria [5], this appears as a promising route to deliver antimicrobials while reducing the drug doses and subsequent harmful side effects in antibacterial applications. To this end, different types of ONPs have been used, such as liposomes [6] and nanoparticles (NPs
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • Agnes-Valencia Weiss Marc Schneider Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbruecken, Germany 10.3762/bjnano.14.95 Abstract Nanoparticles have shown an enormous potential as drug delivery systems in the lab. However
  • drug delivery can be achieved, are mechanical properties of nanoparticles. Even though this is often not even considered during formulation development, and it is not requested for approval, an increasing number of studies show that it is important to have knowledge about these characteristics. In this
  • properties of drug carriers. Keywords: atomic force microscopy; drug delivery; elasticity; mechanical properties; nanomedicine; nanoparticles; stiffness measurement; tissue/body distribution; Introduction Drug delivery systems are developed with the aim to transport a given drug to the site of action
PDF
Album
Perspective
Published 23 Nov 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • to confirm the uptake of CUR-HSA-MPs by cancer cells. Our studies revealed that HSA-MPs are potentially promising vehicles for increasing the solubility and bioavailability of CUR. Keywords: albumin submicron particles; cancer therapy; curcumin; drug delivery; Introduction Curcumin (CUR) is a
  • industrial manufacturing and application and has therefore attracted researchers [21]. Moreover, because of its various drug-binding sites, drugs can effectively be incorporated into the hydrophobic or hydrophilic core of albumin particles. It has been demonstrated that human serum albumin (HSA) acts as a
  • carrier of CUR through direct binding [22]. Kar et al. evaluated the affinity of HSA molecules to interact with CUR and reported that the binding constant was about 1.74 × 105 M−1, suggesting a strong interaction [23]. Therefore, albumin can be considered a useful carrier in drug delivery systems for
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • relatively simple and inexpensive to produce, can be stored for a long time and administered universally, is safe to use, and has few to none adverse drug effects. One approach associated with great hopes are hemoglobin-based oxygen carriers (HBOCs). Initially, however, serious side effects were encountered
  • when using HbMPs as oxygen carriers [34]. In addition to transporting oxygen, HbMPs can also be used as drug carriers. However, in a pharmacokinetic study with HbMPs, accumulation of the particles in the sinusoids of the liver, where the Kupffer cells are located, was observed [35]. The mechanisms of
  • arise spontaneously from C3 by hydrolysis, could be considered here. Moghimi et al. report numerous possible interactions of the complement system with, among others, nanoparticles as a drug delivery system [44]. The authors also discussed the possible effects of spontaneously forming water shells and
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • Joyita Roy Souvik Pore Kunal Roy Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India 10.3762/bjnano.14.77 Abstract Nanoparticles with their unique features have attracted researchers over the past decades. Heavy
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • ]. These materials play a key role both from a fundamental point of view and regarding potential applications in electronic devices, drug delivery, and energy storage and conversion, to name a few [5][6][7][8]. Layered materials range from monoelementals (i.e., graphene, silicene, germanene, or pnictogens
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • chemotherapeutics specifically to the targeted cancer cells. ACNPs combine the benefits of NPs and mAbs to provide high drug loads at the tumor site with better selectivity and delivery efficiency. The mAbs on the NP surfaces recognize their specific receptors expressed on the target cells and release the
  • the theranostic applications of ACNPs for the treatment of cancer. Keywords: active targeting; chemical conjugation; chemotherapeutics; drug delivery; monoclonal antibody; Introduction Off-target side effects, such as myelosuppression, mucositis, alopecia, organ dysfunction, and thrombocytopenia
  • , are the most significant clinical challenge when using conventional chemotherapeutics [1]. To improve therapeutic efficacy and to reduce off-target side effects, strategies such as cancer cell-specific targeted delivery, thermally responsive polymer–drug conjugates, macromolecule drug conjugates, gene
PDF
Album
Review
Published 04 Sep 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • 0.6–1.2 million new leishmaniasis cases appear annually [1]. The treatment for this disease involves using pentavalent antimonials, miltefosine, amphotericin B, paromomycin, or pentamidine. However, side effects of these drugs and an increased number of drug-resistant parasites have been reported [2
  • of drug conjugation with magnetic nanoparticles for treating leishmaniasis. Conclusion The use of SPIONs synthesized with coconut water to treat macrophages infected with Leishmania amazonensis intracellular amastigotes revealed a significant anti-Leishmania effect with a selectivity index more than
  • because of its intrinsic properties, (2) a treatment agent associated with heating through alternating current magnetic fields, and (3) a drug carrier. Finally, SPIONs can be considered a strong candidate for a new therapeutic approach to treating cutaneous leishmaniasis, that is, an accessible and low
PDF
Album
Full Research Paper
Published 30 Aug 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • medical devices for painless transdermal drug delivery. New and improved additive manufacturing methods enable novel microneedle designs to be realized for preclinical and clinical trial assessments. However, current literature reviews suggest that industrial manufacturers and researchers have focused
  • their efforts on one-size-fits-all designs for transdermal drug delivery, regardless of patient demographic and injection site. In this perspective article, we briefly review current microneedle designs, microfabrication methods, and industrialization strategies. We also provide an outlook where
  • microneedles may become personalized according to a patient’s demographic in order to increase drug delivery efficiency and reduce healing times for patient-centric care. Keywords: 3D printing; microfabrication; microneedles; personalized medicine; transdermal drug delivery; two-photon polymerization
PDF
Album
Perspective
Published 15 Aug 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • bioavailability by modifying the absorption, distribution, and elimination of the drug. In this study, BNZ was successfully loaded into nanocarriers composed of myristyl myristate/Crodamol oil/poloxamer 188 prepared by ultrasonication. A stable NLC formulation was obtained, with ≈80% encapsulation efficiency (%EE
  • ) and a biphasic drug release profile with an initial burst release followed by a prolonged phase. The hydrodynamic average diameter and zeta potential of NLC obtained by dynamic light scattering were approximately 150 nm and −13 mV, respectively, while spherical and well-distributed nanoparticles were
  • (Benznidazole Evaluation for Interrupting Trypanosomiasis) trial could not prove that the standard treatment with BNZ can prevent disease progression [11]. BNZ has been classified as a class IV drug (low solubility, low permeability) in the Biopharmaceutics Classification System (BCS) [12]. It has an apparent
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • fields in industry and laboratories, such as chemical synthesis and microreactors [11][12], drug screening [13], and clinical trials [14]. They can create homogeneous reaction environments with controllable parameters for synthesizing homogeneous colloidal nanoparticles with a narrow size distribution
  • the MLM concentration is displayed in Figure 6b. The calculated limit of detection for MLM was found to be 2.8 × 10−8 M, which is significantly below the safety limit established by the US Food and Drug Administration [56]. The SERS substrates displayed an impressive EF of 8.21 × 103 at the 682 cm−1
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • of the nanocomposite could be tailored to specific pharmaceutical applications, such as drug delivery, by adjusting the release medium. To investigate the pH-dependent antibacterial effectiveness, zeta potential and morphology of the nanocomposite were examined at pH 4, 6, and 12, as shown in Figure
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Nanoarchitectonics for advanced applications in energy, environment and biology: Method for everything in materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 738–740, doi:10.3762/bjnano.14.60

Graphical Abstract
  • also discuss coordination-assembled myricetin nanoarchitectonics [32], nanoarchitectonics for membranes with enhanced gas separation capabilities [33], nanoarchitectonics of the cathode of Li–O2 batteries [34], nanoarchitectonics in moist-electric generation [35], nanoarchitectonics for drug delivery
PDF
Album
Editorial
Published 19 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • in MOFs can either be quenched or enhanced. Due to their exceptional characteristics, MOFs have found usage in a variety of fields, including sensors, gas adsorption, energy storage, drug delivery, catalysis, water treatment, and bio-medical imaging [89][90][91][92][93][94][95][96][97][98][99][100
PDF
Album
Review
Published 01 Jun 2023

Microneedle patches – the future of drug delivery and vaccination?

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2023, 14, 494–495, doi:10.3762/bjnano.14.40

Graphical Abstract
  • . Hypodermic syringe injections are, of course, ubiquitous in modern medicine for drug therapy and vaccination, where oral administration is either not desirable or not possible. Delivery may be intravenous, intramuscular or percutaneous. Hypodermic needles of various dimensions are also used to extract venous
  • diagnostics. Microneedles provide shallow transdermal access to the ISF and are an excellent match to these and other developments when integrated into arrays on a substrate to form a patch. The possibility of inexpensive mass-manufactured MN patches for drug delivery, vaccination, and diagnostic testing is a
  • inexpensive disposable MN patches has been heralded for some years as a paradigm shift. Patches without MNs are already used for analgesic and anti-inflammatory treatments, nicotine addiction, and hormone replacement therapies. However, the combination of drug-loaded patches with MNs is still in its infancy
PDF
Editorial
Published 14 Apr 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • some of the areas of focus in the field known as nanobiotechnology [1]. Nanobiotechnology has a wide array of applications: from organ-on-a-chip technologies to nanobiosensors and nanocatalysts for advanced characterisation and imaging tools, from intelligent drug delivery systems to artificial
PDF
Editorial
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • conventional treatments. This resistance is mostly due to the blood–brain barrier, which is the most important obstacle to drug distribution. Since nanoparticles can penetrate through the blood–brain barrier, they are a preferred medicine in brain and nervous system diseases. In glioblastoma multiforme
  • unique properties, low cost, and low cytotoxicity [37][38][39]. Hybrid structures containing silver played an important role in the development of strong antibacterial agents and do not cause drug resistance problems due to their broad-spectrum antibacterial action [40]. These features led to a wide
  • first time the one-pot synthesis of Ch/Q- and Ch/CA-Ag NPs and their biological properties (anticancer and antibacterial). Ag NPs have been prepared and characterized by UV–vis, FTIR, and TEM measurements. In another study of ours, Lomustine, a common drug against glioblastoma cancer, was applied at a
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • overview of the current status and outline important concerns regarding the need for standardized protocols to evaluate NP uptake, NP transfection efficacy, drug dose determination, and variability of nonviral gene delivery systems. Based on these concerns, we propose wide adherence to multimodal
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • properties, drug loading, and drug release are discussed. We highlight the utilization of ethyl cellulose, poly(lactic-co-glycolic acid), and polyurethane/polyurea in the field of nanomedicine as potential drug delivery systems. Advances are still needed to achieve better control over size distribution
  • nanomedicine has yielded several relevant advancements since its beginnings in the early 2000s. The dissolution kinetics of poorly soluble drugs have been improved by the production of drug nanocrystals, enabling continuous drug release. Lipid molecular structures have been manipulated at the nanoscale to
  • should be biocompatible, preferentially biodegradable, and with the capacity for proper encapsulation and release of the drug payload. It is also desired that the matrix surface contains reactive or charged groups that facilitate functionalization by covalent or electrostatic bonding. Herein, we review
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • therapeutic targets and strategies to improve drug delivery through controlling and regulating NanoEL. Nevertheless, the NanoEL mechanism also carries some limitations that result from an incomplete understanding of NP metabolism and toxicity, and the possibility of their participation in the unintended
  • whose therapeutic success depends on the effective drug delivery to the target sites through highly selective vascular barriers. A relatively new method that overcomes the endothelial barrier is the use of nanoparticles (NPs), especially different metal nanoparticles, for example, Au or Ti nanoparticles
  • endothelial layer [18][24][25]. NP-modulated endothelial leakiness (NanoEL) could lead to the discovery of new therapeutic targets and strategies to improve drug delivery through controlling and regulating NanoEL. However, the NanoEL mechanism also carries some limitations that result from an incomplete
PDF
Album
Review
Published 08 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • methods for manufacturing ordered structures of nanoparticles is an ongoing challenge. Ordered structures of SiO2 nanoparticles have gained increased attention due to the great potential they offer in filtering, separation, drug delivery, optics, electronics, and catalysis. Biomolecules, such as peptides
  • gained increased attention due to the great potential they offer in filtering, separation, drug delivery, optics, electronics, and catalysis [1][2][3][4][5]. Nanoparticles with ordered 3D structures, such as supra-particles or super lattices, can possess properties that are not observed in the bulk
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties
  • disciplines, such as nanomaterials science, mechanical engineering, pharmacology, and clinical medicine. Nanoparticle (NP)-based therapeutics are uniquely able to improve drug loading efficiency, control drug release, and protect drug molecules against undesired degradation [1][2]. NPs are widely used in
  • system (RES) or the mononuclear phagocytosis system (MPS) [4]. The subsequent rapid clearance from blood circulation by the liver and kidneys results in insufficient drug accumulation in the target tissue [5]. In addition, NPs can interact with proteins to form a protein corona, which affects the
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • genetic alterations leading to drug resistance. Further, an emphasis will be put on the developmental challenges of targeted nanomedicines for the co-delivery of therapeutic agents to lung tumors. Finally, current approaches in literature used to design nanotools loaded with logical combinations of
  • , and evidence has been derived that no single drug can treat the broad spectrum of molecular alterations in NSCLC. Considering the fact that multiple mechanisms are involved in the reactivation of the EGFR signaling pathway, targeting multiple constituents within the EGFR cascade or targeting parallel
  • complexity of resistance and continuous cancer mutations. Co-delivery of TK inhibitors with anticancer drugs, immunotherapy, or gene-specific therapeutics to disrupt key resistance pathways, reactivate p53-mediated apoptosis, or inhibit cellular drug efflux are only a few examples of strategies used to fight
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • Makoto Komiyama Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan 10.3762/bjnano.14.21 Abstract Cyclodextrins have been widely employed for drug delivery systems (DDSs) in which drugs are selectively delivered to a
  • nanoarchitectures are highly promising for future applications in medicine, pharmaceutics, and other relevant fields. Keywords: cyclodextrin; drug delivery system (DDS); nanoarchitecture; phototherapy; siRNA; Review 1 Introduction Recently, drug delivery systems (DDSs) have been attracting much interest [1][2][3
  • ][4][5][6][7][8][9][10][11][12]. By delivering drugs selectively to disease sites, the drug dosage can be reduced, and undesired side-effects are minimized. Undoubtedly, these methodologies are essential for further progresses in medicine. In order to accomplish eminent DDS, drugs should be combined
PDF
Album
Review
Published 09 Feb 2023
Other Beilstein-Institut Open Science Activities