Search results

Search for "nanofabrication" in Full Text gives 118 result(s) in Beilstein Journal of Nanotechnology.

Computing the T-matrix of a scattering object with multiple plane wave illuminations

  • Martin Fruhnert,
  • Ivan Fernandez-Corbaton,
  • Vassilios Yannopapas and
  • Carsten Rockstuhl

Beilstein J. Nanotechnol. 2017, 8, 614–626, doi:10.3762/bjnano.8.66

Graphical Abstract
  • nanofabrication technology made the creation of large volumes of particles with complicated geometries possible [1][2][3][4][5][6]. The latter constitute the base for nanomaterials with advanced properties [7]. This also triggered the need for efficient computational tools to back up experimental findings with
PDF
Album
Correction
Full Research Paper
Published 14 Mar 2017

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • . Thus, in vitro studies using modified artificial surfaces to induce biological responses in these cells are an important experimental model in vascular cell biology and biomaterial research (Figure 3). In this review, we provide an overview of materials and important micro- and nanofabrication
  • development of micro- and nanofabrication techniques has permitted the manufacturing of precise surface topographies of materials surfaces. Samples with specific surface features haven been widely used for in vitro cell biology studies either to manipulate cell adhesion and resulting cell responses or to give
  • methods [55] process polymeric material and are also applied to fabricate cell culture substrates. However, the substrates resulting from these fabrication methods are in most cases (irregularly) porous, foam-like 3D structures rather than (symmetrical) surface-patterned substrates. 1.3 Nanofabrication
PDF
Album
Review
Published 08 Nov 2016

Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface

  • Ilya A. Milekhin,
  • Sergei A. Kuznetsov,
  • Ekaterina E. Rodyakina,
  • Alexander G. Milekhin,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2016, 7, 1519–1526, doi:10.3762/bjnano.7.145

Graphical Abstract
  • nanofabrication. The nanoantennas were assigned to have rounded edges with a fillet radius of 15 nm. The thickness hSiO2 of the SiO2 layer was a variable parameter ranging within 0–100 nm. The transverse pitch gy of the nanoantennas was fixed as 5000 nm, while the nanoantenna lengths l of 500, 700, 900, 1100
PDF
Album
Full Research Paper
Published 26 Oct 2016

Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores

  • Adrien Chauvin,
  • Cyril Delacôte,
  • Mohammed Boujtita,
  • Benoit Angleraud,
  • Junjun Ding,
  • Chang-Hwan Choi,
  • Pierre-Yves Tessier and
  • Abdel-Aziz El Mel

Beilstein J. Nanotechnol. 2016, 7, 1361–1367, doi:10.3762/bjnano.7.127

Graphical Abstract
  • nanofabrication approaches, which allows for producing nanostructures with complex shapes and morphologies not possible to achieve using classical routes [1]. Physical vapor deposition (PVD) is a very simple and efficient process usually used for the growth of thin films finding application in a wide range of
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2016

Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy

  • Lukasz Rzeznik,
  • Yves Fleming,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2016, 7, 1113–1128, doi:10.3762/bjnano.7.104

Graphical Abstract
  • HIM has been developed for high resolution electron microscopy and nanofabrication using the He+ or Ne+-emitting atomic level ion source (ALIS) [4]. Compared to cluster ion bombardment, the use of monoatomic primary ion species (such as Cs+, O−, Ga+) for imaging in SIMS allows significantly higher
PDF
Album
Full Research Paper
Published 02 Aug 2016

Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

  • Chamanei Perera,
  • Kristy Vernon,
  • Elliot Cheng,
  • Juna Sathian,
  • Esa Jaatinen and
  • Timothy Davis

Beilstein J. Nanotechnol. 2016, 7, 751–757, doi:10.3762/bjnano.7.66

Graphical Abstract
  • Chamanei Perera Kristy Vernon Elliot Cheng Juna Sathian Esa Jaatinen Timothy Davis Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia Australian National Nanofabrication Facility QLD node, University of Queensland, St Lucia 4072, Queensland
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2016

Near-field visualization of plasmonic lenses: an overall analysis of characterization errors

  • Jing Wang,
  • Yongqi Fu,
  • Zongwei Xu and
  • Fengzhou Fang

Beilstein J. Nanotechnol. 2015, 6, 2069–2077, doi:10.3762/bjnano.6.211

Graphical Abstract
  • nanophotonic devices. Keywords: characterization; nanofabrication; near-field; plasmonic lenses; plasmonic structures; Introduction The characteristics of nanophotonic devices that are based on surface plasmon polaritons (SPPs) are appealing because of the extraordinary transmission in free space [1][2][3][4
  • [21]. This plasmonic lens has been selected here as a typical example for the purpose of illustrating and analyzing the characterization errors originated from the nanofabrication process of the plasmonic lenses. The focused spot can be tuned by means of tailoring the long and the short axes of the
  • limit (less than half of the incident wavelength of 532 nm). To verify it experimentally, FIB and NSOM were employed for nanofabrication and near-field characterization, respectively. Figure 3, Figure 4 and Figure 5 are NSOM probing results for the lenses with different ratios σ ranging from 0.7 to 0.9
PDF
Album
Full Research Paper
Published 26 Oct 2015

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

  • Rachel M. Thorman,
  • Ragesh Kumar T. P.,
  • D. Howard Fairbrother and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2015, 6, 1904–1926, doi:10.3762/bjnano.6.194

Graphical Abstract
  • induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition
PDF
Album
Review
Published 16 Sep 2015

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • nanofabrication. Along the same path, Gregor Hlawacek, Bene Poelsema and coworkers focused on the interaction of helium ions with metal surfaces (gold in particular) [13][14][15]. In a series of three distinct articles, they concentrate on ion channeling, crystal mapping, and finally, ion-induced modification of
  • polymerization that is a basis for the creation of ultrathin nanomembranes. Finally, André Beyer and coworkers show impressive HIM images of ultrathin carbon nanomembranes [17], which is a clear indication of the potential of the bourgeoning fields of helium ion microscopy and lithography towards nanofabrication
PDF
Editorial
Published 09 Sep 2015

In situ SU-8 silver nanocomposites

  • Søren V. Fischer,
  • Basil Uthuppu and
  • Mogens H. Jakobsen

Beilstein J. Nanotechnol. 2015, 6, 1661–1665, doi:10.3762/bjnano.6.168

Graphical Abstract
  • photoresist; in situ synthesis; metal nanoparticles; micro and nanofabrication; nanocomposite; Findings Noble metal nanoparticles (NPs) have been of high interest for many years as their unique properties make them useable in a large variety of applications [1]. The application of these NPs ranges from
  • optical imaging, optoelectronics and electrochemistry to catalysts [2]. However, it is difficult to use such NPs in conjunction with standard top down micro- and nanofabrication processes as positioning and control of the nanoparticles are impossible to maintain [3]. Homogeneous polymeric thin film metal
  • nanocomposites are therefore of great interest within micro- and nanofabrication [4][5][6]. The nanoparticles encased in a polymeric matrix should maintain their physical properties, while the nanocomposite can be structured by using standard fabrication methods allowing for the development of new optoelectronic
PDF
Album
Letter
Published 30 Jul 2015

Molecular materials – towards quantum properties

  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1485–1486, doi:10.3762/bjnano.6.153

Graphical Abstract
  • , and a great deal of interest from scientists working in materials science, chemistry, physics, and nanofabrication technologies has been attracted. For example, the company D-wave has demonstrated a quantum annealer that performs certain calculations sufficiently rapidly to have a consortium, which
PDF
Editorial
Published 08 Jul 2015

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

  • Gian Carlo Gazzadi and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2015, 6, 1298–1305, doi:10.3762/bjnano.6.134

Graphical Abstract
  • of nanotechnology and nanoscience in advanced applications and fundamental research requires nanofabrication techniques that are highly resolved but at the same time flexible and feasible with research laboratory equipment. A promising approach is represented by focused electron beam induced
  • beam path [24]. This approach offers the possibility to deposit and analyze the material free from any substrate contribution, but above all it enables 3D nanofabrication [25]. The SNWs are characterized electrically at high current densities and analyzed structurally by transmission electron
PDF
Album
Full Research Paper
Published 11 Jun 2015

Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method

  • Alexander Samardak,
  • Margarita Anisimova,
  • Aleksei Samardak and
  • Alexey Ognev

Beilstein J. Nanotechnol. 2015, 6, 976–986, doi:10.3762/bjnano.6.101

Graphical Abstract
  • silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the
  • resolution on semiconductor and metallized substrates using the single-spot nanofabrication was demonstrated at low-energy acceleration voltages. The resulting nanostructures have sharp edges and defect-free lines. Arrays of nanoelements or complex nanostructures can be easily scaled to large areas, with the
PDF
Album
Full Research Paper
Published 17 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • Brett B. Lewis Michael G. Stanford Jason D. Fowlkes Kevin Lester Harald Plank Philip D. Rack Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
PDF
Album
Full Research Paper
Published 08 Apr 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • transition metal nanostructures, it appears interesting to also study the growth of such objects on a non-metallic template. We underline that since self-organized growth allows the fabrication of a high-density of nanostructures with a narrow size distribution, this route of nanofabrication opens up the
PDF
Album
Full Research Paper
Published 19 Mar 2015

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution. Keywords: focused electron beam induced deposition; nanofabrication; platinum; simulation; Introduction Focused electron beam induced deposition (FEBID) has
  • candidate for an enabling nanofabrication technology. The technique relies on the local nano-synthesis of precursor molecules by a focused electron beam and its subsequent electron emission from the substrate and the deposit itself [1][3][4][5][6]. Typically, a gaseous precursor is brought into the chamber
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111)

  • Zhi Chen,
  • Svetlana Klyatskaya,
  • José I. Urgel,
  • David Écija,
  • Olaf Fuhr,
  • Willi Auwärter,
  • Johannes V. Barth and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 327–335, doi:10.3762/bjnano.6.31

Graphical Abstract
  • years, significant strides have been made in the understanding and the application of nanofabrication from the "bottom-up" perspective [13][14][15][16][17]. The tailored design, controlled formation, and in-depth characterization of self-assembled, molecular and periodic heterostructures (ranging over
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO) is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed
  • scale. Interest of developing SPL-based nanofabrication methods relies on its extraordinary performance in terms of resolution and flexibility, as well as its potential for applications, e.g., in materials/surface science, quantum devices and nanoelectronics [1]. Moreover, SPL has the additional
PDF
Album
Full Research Paper
Published 19 Jan 2015

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • mechanisms and final effect. Mechanisms relevant to the laser nanostructuring (LNS) of thin metal films are often discussed in the broader context of the non-equilibrium processes due to pulsed-laser interaction at time scales from micro- to femto-seconds and with nanofabrication by material ablation and
PDF
Album
Review
Published 13 Nov 2014

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • properties on one side and material availability, sustainability, technological feasibility on the other side. The most important bottom-up and top-down nanofabrication techniques for large area silicon nanowire arrays, to be used for high efficiency thermoelectric devices, will be presented and discussed
  • . Keywords: nanofabrication; nanostructures; silicon nanowires; thermoelectricity; Introduction The thermoelectric (TE) effect, known since the 19th century, offers an interesting perspective for the direct conversion of heat in electrical power, and vice versa. Given a thermal gradient, a thermoelectric
PDF
Album
Review
Published 14 Aug 2014

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

  • Florian Vollnhals,
  • Martin Drost,
  • Fan Tu,
  • Esther Carrasco,
  • Andreas Späth,
  • Rainer H. Fink,
  • Hans-Peter Steinrück and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2014, 5, 1175–1185, doi:10.3762/bjnano.5.129

Graphical Abstract
  • deposition; nanofabrication; scanning transmission X-ray microscopy; Introduction The fabrication of nanostructures by using focused electron-beam induced processing (FEBIP) techniques, especially electron-beam induced deposition (EBID), has progressed considerably over the last decade [1][2][3][4][5]. In
  • (CO)8 [15] makes that precursor an obvious candidate for the fabrication of layered Co/Fe nanostructures with arbitrary shapes. Thus, the presented results considerably expand the possibilities of FEBIP-based nanofabrication techniques. We also show that the potential for (auto-)catalytic
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials

  • Jun Zhao,
  • Bettina Frank,
  • Frank Neubrech,
  • Chunjie Zhang,
  • Paul V. Braun and
  • Harald Giessen

Beilstein J. Nanotechnol. 2014, 5, 577–586, doi:10.3762/bjnano.5.68

Graphical Abstract
  • MSEB, MC-246, 1304 W. Green Street, Urbana, Illinois 61801, United States 10.3762/bjnano.5.68 Abstract Many nano-optical applications require a suitable nanofabrication technology. Hole-mask colloidal nanolithography has proven to be a low-cost and large-area alternative for the fabrication of complex
  • over large areas, stacked nanostructures, or multiple materials aligned with respect to each other require a major effort. Also the creation of 3D chiral materials is extremely difficult with this method [15]. An alternative method for nanofabrication includes nano-imprint lithography, which requires a
PDF
Album
Video
Full Research Paper
Published 06 May 2014

Fabrication of carbon nanomembranes by helium ion beam lithography

  • Xianghui Zhang,
  • Henning Vieker,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2014, 5, 188–194, doi:10.3762/bjnano.5.20

Graphical Abstract
  • a higher resolution and the small convergence angle of the ion beam leads to a larger depth of field. As an imaging tool, this instrument has a high surface sensitivity and is particularly advantageous to distinguish monolayers from the supporting substrate [18][19]. As a tool for nanofabrication
  • employed HIM both as a nanofabrication tool to cross-link SAMs and as an imaging tool for the ex situ observation of the crosslinking process. As regards the nanofabrication, both supported and freestanding CNMs were fabricated by transferring them onto a silicon substrate and a transmission electron
PDF
Album
Full Research Paper
Published 21 Feb 2014

Surface assembly and nanofabrication of 1,1,1-tris(mercaptomethyl)heptadecane on Au(111) studied with time-lapse atomic force microscopy

  • Tian Tian,
  • Burapol Singhana,
  • Lauren E. Englade-Franklin,
  • Xianglin Zhai,
  • T. Randall Lee and
  • Jayne C. Garno

Beilstein J. Nanotechnol. 2014, 5, 26–35, doi:10.3762/bjnano.5.3

Graphical Abstract
  • changes at different time intervals were captured by successive AFM images. Scanning probe based nanofabrication was accomplished using protocols of nanografting and nanoshaving with n-alkanethiols and a tridentate molecule, 1,1,1-tris(mercaptomethyl)heptadecane (TMMH). Nanografted patterns of TMMH could
  • before and after nanofabrication steps. Side-by-side comparisons of the surface structures of multidentate adsorbates versus n-alkanethiol SAMs were accomplished using nanografting to give a local measurement of film thickness, referencing the well-known dimensions of n-alkanethiols as a baseline
  • different liquids can be investigated using time-lapse AFM imaging. Investigations of surfaces throughout the course of chemical self-assembly reactions have been monitored with AFM in liquid media [27]. Further, by injecting new molecules into the sample cell, AFM-based nanofabrication can be accomplished
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2014

In situ growth optimization in focused electron-beam induced deposition

  • Paul M. Weirich,
  • Marcel Winhold,
  • Christian H. Schwalb and
  • Michael Huth

Beilstein J. Nanotechnol. 2013, 4, 919–926, doi:10.3762/bjnano.4.103

Graphical Abstract
  • microscope (TEM). During the last decade FEBID has developed from a highly specialized nanofabrication method with a limited selection of application fields to one of the most flexible approaches for functional nanostructure fabrication with true 3D patterning capabilities. By now FEBID-based nanostructures
PDF
Album
Full Research Paper
Published 17 Dec 2013
Other Beilstein-Institut Open Science Activities