Search results

Search for "penetration" in Full Text gives 326 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoscale friction and wear of a polymer coated with graphene

  • Robin Vacher and
  • Astrid S. de Wijn

Beilstein J. Nanotechnol. 2022, 13, 63–73, doi:10.3762/bjnano.13.4

Graphical Abstract
  • indentation simulation with a load of 6.4 nN to determine the penetration depth after a long period of time (Figure 5). We observe only a slight increase in depth by around 1 Å between 1 and 4 ns. Thus, we consider the tip to be indented fully after 1 ns. We do note, however, that during sliding the tip sinks
  • crumpled graphene sheet. The graphene layer affects the roughness and structure of the substrate. The penetration depth versus time for long indentations, and for the sliding process, for a tip with radius of 50 Å and load of 6.4 nN (4 eV/Å), on the flat graphene. The dashed line represents the time at
PDF
Album
Full Research Paper
Published 14 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • penetration and hemocompatibility which can be useful for biomedical applications [12][17]. Furthermore, in order to be exploited in biomedical applications, NPs need to fulfill certain criteria which include water solubility, excellent colloidal stability, biocompatibility, and high saturation magnetization
PDF
Album
Full Research Paper
Published 02 Dec 2021

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • associated with modelling the 24 hpf endpoint might possibly reflect different systemic exposure routes and the failure of the descriptors to properly account for factors affecting dermal penetration. Whilst the experimental setup involved continuous waterborne exposure of the embryonic zebrafish to the ENMs
  • dispersed in fish water medium and dermal penetration is typically observed as the main route of systemic exposure up to 120 hpf, the appearance of swallowing around 72 hpf allows for toxicity via an oral exposure route to manifest prior to 120 hpf but not at 24 hpf [31]. However, it is also possible that
  • models developed here for excess lethality at 120 hpf and improved models for mortality at 24 hpf.) It is possible that our findings reflect the fact that toxicity up to 24 hpf requires dermal penetration to reach the site of biological action, since swallowing does not start until around 72 hpf [31
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • temperature. Figure 1 also shows the change in the Josephson junction characteristic length L/λJ, where is the Josephson penetration depth, which determines the size of a fluxon in the junction. Here μ0 is the vacuum permeability, Jc is the critical current density, and d = t + 2λL is the effective magnetic
  • thickness with the junction barrier thickness t = 1.5 nm and the London penetration depth λL = 250–150 nm [38]. It can be seen from the figure that, for nitrogen temperatures, the Josephson junction can generally be considered as a short JJ. With the decrease in the temperature, its characteristic dimension
PDF
Album
Full Research Paper
Published 23 Nov 2021

A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques

  • Berkin Uluutku,
  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2021, 12, 1063–1077, doi:10.3762/bjnano.12.79

Graphical Abstract
  • sinusoidal stresses and strains. To analyze the case of an AFM tip penetrating a viscoelastic surface we need an equation relating force with sample penetration (indentation). Equation 1 and Equation 2 relate stress and strain but do not consider the geometrical aspects of our boundary value problem
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • microelectromechanical systems (MEMS) and provided a platform for microfabrication of compact miniaturized medical devices for human health screening, monitoring, and diagnostic purposes. Microneedles are microstructures that are sharp and robust enough for skin penetration, made using MEMS technology. The application
  • micromoulding [5]. In addition to microneedles for skin penetration, these microstructures have also been used in other sites of the body including the delivery of bioactive drugs into the eyes [6] and the insertion of molecules into cells using nanoneedles [7][8]. The present article reviews applications
  • and causing discomfort to the patient. Human skin penetration experiments have demonstrated the reduced pain associated with microneedle penetration and the effect has been quantified using the visual analogue scale (VAS), showing an approximately 90% reduction in pain for a microneedle penetrating
PDF
Album
Review
Published 13 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • had important security and corrosion issues since sodium and sulfur are both liquid under the working conditions. Therefore, the applicability of HT Na–S batteries is limited to stationary deployment, and the operation temperature needs to be reduced in order to improve market penetration of Na–S
PDF
Album
Review
Published 09 Sep 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • -linear flux-flow Hall effect Resistivity in type-II superconductors with sizes larger than the London penetration depth, λ, is caused by motion of Abrikosov vortices, that is, it has a flux-flow (FF) nature [50][51][52][53]. Since our micrometer-size bridges are significantly larger than λ ≈ 100 nm of Nb
PDF
Album
Full Research Paper
Published 17 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • several review articles [3][7][10][11]. Endogenous or internal stimuli can be hard to control because of the heterogeneous disease environment. On the other hand, the use of exogenous or external stimuli may cause tissue damage and the depth of penetration may not be sufficient to trigger drug release
  • generation are recognized as the mechanism of action of US-responsive nanomaterials. These nanomaterials can act through at least one of the mechanisms. Cargo release, drug activation, cell damage, and enhanced cargo penetration, in addition to contrast enhancement, are the clinically practical consequences
  • are involved in US contrast imaging and can provide a way to improve the penetration capability of large particles, genes, and cells. They can trigger local drug release and provide better in vivo spatial control by applying mechanical forces of oscillation, expansion, and inertial cavitation from ADV
PDF
Album
Review
Published 11 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • other forms [21]. As a biofriendly approach, the penetration of biological tissues without damage and free movement in the microbial environment can be achieved with magnetic fields, which has become a highlight of research in the field of MNRs. A magnetic microrobot (MMR) [14] is a micro-/nanoscale
PDF
Album
Review
Published 19 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • binding between the virus and the host cell [109]. A viral infection begins with the adhesion or binding of the virus to the host receptors, followed by penetration, replication, and budding. The main antiviral strategies are to effectively block the binding of the virus to the host receptors (i.e, the
  • prophylactic effect) and to inhibit viral replication and budding (i.e, the therapeutic effect) [75][76][110]. In vitro studies reveal that AgNPs can act as inhibitors of viral entry by blocking viral attachment and penetration into cells [109][111][112]. They also inhibit the synthesis of viral negative
PDF
Album
Supp Info
Review
Published 14 May 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • films, as depicted in the SEM images (Figure 7a–c). The morphology of these samples was verified using the depth penetration technique of SEM, where it was evidenced that the analyzed films were compact. We could also observe an increase in granulation of the samples with an increase in thickness. The
PDF
Album
Full Research Paper
Published 19 Apr 2021

Intracranial recording in patients with aphasia using nanomaterial-based flexible electronics: promises and challenges

  • Qingchun Wang and
  • Wai Ting Siok

Beilstein J. Nanotechnol. 2021, 12, 330–342, doi:10.3762/bjnano.12.27

Graphical Abstract
  • µm PI layers. The bifurcated flap shape was used to achieve good penetration and attachment to the cortical surface and avoid injuring blood vessels on the brain midline (Figure 5c, left). The width of the Au lines was designed to be 100 µm to reach a low impedance value and enhance the signal-to
PDF
Album
Review
Published 08 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • for focused beams of light ions are still under exploration. This is a consequence of the novelty of the technique and of several significant peculiarities in the behaviour of light ions upon interaction with a solid. First, light ions exhibit a large interaction volume in the solid. The penetration
  • depth of 30 keV He ions in silicon is more than five times larger than the penetration depth of Ga ions of the same energy [21]. The consequently large collision cascade may create a significant amount of heat. Even for small ion doses deformation of the manufactured structures can be observed when
  • the varying crystal orientations cause a variation in the local sputter rate due to ion channeling [24]. If one of the symmetry axes of the crystal lattice is oriented along the beam direction, the ion penetration depth is larger, which, in turn, reduces the sputter rate. The resulting surface
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • conversion of absorbed NIR light to heat. In cancer intervention, NIR-mediated photothermal therapy is gaining more attention due to the deep tissue penetration with minimal absorbance by healthy tissues [15][16]. Gold nanorods are potential delivery carriers for sustained drug release in response to an
PDF
Album
Full Research Paper
Published 31 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • of a pulmonary disease, where the airway–mucus barrier is difficult to penetrate, nanoparticles in the size range of 200 nm are more effective in mucus penetration [20][37]. The effect of surface chemistry on the mechanism of NPs uptake is, however, not sufficiently understood yet. Understanding the
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Determination of elastic moduli of elastic–plastic microspherical materials using nanoindentation simulation without mechanical polishing

  • Hongzhou Li and
  • Jialian Chen

Beilstein J. Nanotechnol. 2021, 12, 213–221, doi:10.3762/bjnano.12.17

Graphical Abstract
  • case of pileup and too low in the case of sink-in [10]. Nix and Gao deduced the theory of strain gradient plasticity to interpret the “size effect” of indentation as an increase in physical quantity with the decreasing depth of penetration [11]. Experimental results show that the size effect of
  • indentation for pyramidal and spherical indenters can be correlated [12]. For a spherical (parabolic) indenter, hardness does not depend on depth, but on the radius of the indenter. Therefore, for spherical indentation, the radius of the impression rather than the depth of penetration determines the size
PDF
Album
Full Research Paper
Published 19 Feb 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • layered thick solids and, thus, do not contain spaces for the penetration of Li ions into the electrode [15]. Therefore, to enhance the performance of MXene supercapacitors an increased ion transfer rate is needed [18][23]. MXenes exhibit two major changes due to the removal of the A layer from the
PDF
Album
Review
Published 13 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • with UCNPs avoids autofluorescence. Besides, UCNPs have further advantages for applications in life science, such as deep penetration depth, minimal photodamage, and high resistance to photobleaching [1][2][3][4][5][6][7][8][9]. Moreover, high thermal and photochemical stability, as well as high
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • Bdellovibrio and prey, for example, Escherichia coli, and stopped the experiment by chemical fixation at specific points during incubation. This allowed for the study of the attachment of the predator to its prey, followed by penetration of the membrane, and the entering into the cytoplasm. After that, the
PDF
Album
Review
Published 04 Jan 2021

Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector

  • Eduardo Serralta,
  • Nico Klingner,
  • Olivier De Castro,
  • Michael Mousley,
  • Santhana Eswara,
  • Serge Duarte Pinto,
  • Tom Wirtz and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2020, 11, 1854–1864, doi:10.3762/bjnano.11.167

Graphical Abstract
  • , thereby creating easier directions for the penetration of the projectile atom. If the projectile atom reaches the crystal at an angle smaller than the critical angle for such an axial or planar channeling direction, the projectile will be steered along this direction and will experience a reduced
PDF
Album
Full Research Paper
Published 11 Dec 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • system is not perfectly flat. The surface has noticeable irregularities that penetrate into adjacent layers. The figures also show that there is a mutual penetration of one contact layer into another. Therefore, the layer interface has a certain quantifiable thickness. It should be noted that the atomic
  • lead–iron, is small: TF ≈ 0.4. This reduces the probability of penetration of Cooper pairs from the superconductor into the ferromagnetic material and requires smaller thicknesses of superconducting layers in order to obtain a significant effect of ferromagnetism on superconductivity. In turn, the
  • formation. An increase in temperature leads to an increase in the total thickness of the nanosystem (at 800 K, this value is increased by 0.3 nm compared with a temperature of 300 K). The region of mutual penetration of Nb atoms into the Co layers (and vice versa) also increases, which is clearly seen in
PDF
Album
Full Research Paper
Published 24 Nov 2020
Other Beilstein-Institut Open Science Activities