Search results

Search for "plasmon resonance" in Full Text gives 205 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • Abstract Active plasmonics is a key focus for the development of advanced plasmonic applications. By selectively exciting the localized surface plasmon resonance sustained by the short or the long axis of silver nanorods, we demonstrate a polarization-dependent strong coupling between the plasmonic
  • ; Introduction For decades, plasmonic systems have been extensively studied for their potential applications in many research fields. Due to their localized surface plasmon resonance (LSPR), metallic nanoparticles have been used to enhance the sensitivity of bio- or chemo-sensors [1], enhance and direct the
  • performed on the sample after the photochromic transition were sufficiently fast to avoid this reverse photochromic transition, which was confirmed by measuring the absorption of the MC layer before and after the measurements. The surface plasmon resonance of the coated Ag nanorods was characterized by
PDF
Album
Full Research Paper
Published 08 Oct 2018

Nanoantenna structures for the detection of phonons in nanocrystals

  • Alexander G. Milekhin,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Alexander V. Latyshev,
  • Volodymyr M. Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2018, 9, 2646–2656, doi:10.3762/bjnano.9.246

Graphical Abstract
  • Semiconductor Physics, Technische Universitaet Chemnitz, 09126, Chemnitz, Germany 10.3762/bjnano.9.246 Abstract We report a study of the infrared response by localized surface plasmon resonance (LSPR) modes in gold micro- and nanoantenna arrays with various morphologies and surface-enhanced infrared absorption
  • transverse optical phonons are activated in the infrared spectra. Keywords: localized surface plasmon resonance; metal nanoclusters; nanoantenna; phonons; semiconductor nanocrystals; surface-enhanced infrared absorption; Introduction Surface-enhanced infrared absorption (SEIRA) by organic species placed on
  • ), while the antenna length varied in the range of 7–31 µm. The optimal values of the latter were determined numerically using 3D full-wave simulations in the ANSYS Electromagnetics Suite R18 software [32] to adjust the plasmon resonance to a specific wavelength in the far-infrared (terahertz) spectral
PDF
Album
Full Research Paper
Published 05 Oct 2018

Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation

  • Wei-Hung Hsu,
  • Frances Camille P. Masim,
  • Armandas Balčytis,
  • Hsin-Hui Huang,
  • Tetsu Yonezawa,
  • Aleksandr A. Kuchmizhak,
  • Saulius Juodkazis and
  • Koji Hatanaka

Beilstein J. Nanotechnol. 2018, 9, 2609–2617, doi:10.3762/bjnano.9.242

Graphical Abstract
  • selectivity based on surface plasmon resonance [15]. An increase of the laser-absorption efficiency can be expected in plasmonic nanoparticles, which results in the efficient generation of highly ionized charge states [13][14]. It is expected that this characteristic interaction between intense femtosecond
  • . The plasmon resonance excitation for these NPs is expected to be near 520 nm. This provides a moderate enhancement of the optical near-fields as shown further by numerical simulations. The incident fluence of the main pulse used in the present study significantly exceeds both the ablation threshold
  • that the appropriate size for the highest X-ray intensity is 40–50 nm. For ultrasound generation under fs-laser excitation [34][49], gold nanorod particles with more efficient surface plasmon resonance effects [50] were also used. Further enhancements of X-ray intensities are expected under double
PDF
Album
Full Research Paper
Published 01 Oct 2018

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • efficient diffusion barrier against metal atoms [24], so Au–Si monoatomic layer could be present on the surface of the support. Exemplary absorbance spectra recorded for the 2.8 nm Au film after annealing at 550 °C for 15 min is presented in Figure 10. A strong maximum corresponding to plasmon resonance is
  • , because of the intensity profile of the incident light. As a consequence, the surface plasmon resonance was also stronger in that region. In Figure 14, the amplitudes of particular components of the electromagnetic field are presented as a result of FDTD simulations. Here the amplitudes of the field
PDF
Album
Full Research Paper
Published 28 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • excited to generate electrons, reacting with O2 to form •O2− radicals due to the plasmon resonance (SPR) effect [32]. Based on above analysis, the rational design and construction of Bi2MoO6-based heterostructures is favorable for the separation of charges, leading to a superior activity in pollutant
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • , indicating a high polydispersity of the formed silver nanostructures. Simultaneously, a decrease in the intensity of the AgCl absorption band at 254 nm is observed, whereby the intensity of the AgCl band is then comparable to that of the plasmonic band. However, after 5 min of light exposure, the plasmon
  • resonance band became narrower, showing a typical shape for silver colloids. Between 5 and 10 min of light exposure, the intensity of the plasmonic band at 429 nm reaches its maximum, and no further increase of the plasmonic band intensity could be observed between 10 and 15 min of light exposure
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • and the end point [40]. Decreasing the interparticle gap size, therefore, leads to stronger electromagnetic fields at the gap and the end point locations. However, one has to keep in mind, that the reduction of the gap size also is accompanied by a shift of the plasmon resonance and the strongest
  • the foremost, smallest AuNP of the antenna. However, a closer inspection of both approach curves also shows that for antenna-molecule separations beyond 10 nm the optical response stems largely from the 80 nm AuNP antenna. Plasmon resonance spectra of CB[8]-mediated dimers Figure 3B summarizes the
PDF
Album
Full Research Paper
Published 17 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications

  • Mykola Borzenkov,
  • Maria Moros,
  • Claudia Tortiglione,
  • Serena Bertoldi,
  • Nicola Contessi,
  • Silvia Faré,
  • Angelo Taglietti,
  • Agnese D’Agostino,
  • Piersandro Pallavicini,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2018, 9, 2040–2048, doi:10.3762/bjnano.9.193

Graphical Abstract
  • antibacterial films and coatings. Keywords: antibacterial properties; gold nanostars; photothermal effect; poly(vinyl alcohol) films; Introduction The photothermal properties of non-spherical gold nanoparticles possessing localized surface plasmon resonance (LSPR) located in NIR range has already been
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • -TNTs and NDM-Zn-Ag-TNTs samples, respectively. Obviously, the absorbance of TNTs decorated with Ag is higher than bare TNTs within the visible light range (450–800 nm). The loading of AgNPs promotes surface plasmon resonance (SPR) scattering into the TNT layer, which further increases the nearby
PDF
Album
Full Research Paper
Published 14 Jun 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • different sizes and materials. Keywords: colloidal lithography; electrostatic interactions; large-area nanostructure patterning; localized surface plasmon resonance; spherical nanoparticles; Introduction In recent years, ordered nanostructured arrays have attracted great interest because of their
  • -area nanostructure arrays with controlled size and shape for application in localized surface plasmon resonance (LSPR) sensing and magnonics. Experimental Materials Glass substrates (3.5 × 2.5 cm2) were obtained from Electro Optical Technologies. Polystyrene spheres with diameter of 80 ± 7 nm (sulfate
  • excitation of localized surface plasmon resonance (LSPR) results in strong light scattering and absorption as well as enhanced electromagnetic fields in proximity of the metal structures. These properties are strongly dependent on particles size, geometry and distribution. As an example, applications based
PDF
Album
Full Research Paper
Published 29 May 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • (gold or silver) nanotriangles deposited on a glass or Si substrate, are of high interest to study plasmonics, and more specifically localised surface plasmon resonance (LSPR) [23][24]. Indeed, their geometry and their metallic nature result in the spatial confinement of the electric field at their
PDF
Album
Full Research Paper
Published 23 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Colorimetric detection of Cu2+ based on the formation of peptide–copper complexes on silver nanoparticle surfaces

  • Gajanan Sampatrao Ghodake,
  • Surendra Krishna Shinde,
  • Rijuta Ganesh Saratale,
  • Avinash Ashok Kadam,
  • Ganesh Dattatraya Saratale,
  • Asad Syed,
  • Fuad Ameen and
  • Dae-Young Kim

Beilstein J. Nanotechnol. 2018, 9, 1414–1422, doi:10.3762/bjnano.9.134

Graphical Abstract
  • Cu2+-binding casein peptide ligands. The solution of aggregates was incubated for 20 min to allow for the coordination to occur. Results and Discussion Synthesis and characterization of casein peptide-capped AgNPs The surface plasmon resonance (SPR) of spherical AgNPs immediately caused an absorbance
  • of the casein peptide-capped AgNPs was revealed after removal of excess casein peptides from the AgNPs solution, by observing the surface plasmon resonance (λmax) and bandwidth (Δλ), before and after centrifugation of the AgNPs. Characterization of AgNPs The UV–vis spectra of the AgNPs in the
PDF
Album
Full Research Paper
Published 15 May 2018

Facile chemical routes to mesoporous silver substrates for SERS analysis

  • Elina A. Tastekova,
  • Alexander Y. Polyakov,
  • Anastasia E. Goldt,
  • Alexander V. Sidorov,
  • Alexandra A. Oshmyanskaya,
  • Irina V. Sukhorukova,
  • Dmitry V. Shtansky,
  • Wolgang Grünert and
  • Anastasia V. Grigorieva

Beilstein J. Nanotechnol. 2018, 9, 880–889, doi:10.3762/bjnano.9.82

Graphical Abstract
  • correspond to the metal state of silver [31]. Both characteristic energies are decreased slightly, probably, as a result of PVP adsorbates at the surface. The absence of a silver oxide phase at the surface is also beneficial for efficient surface plasmon resonance, which is strongly required for SERS. This
  • ). Likely, PVP molecules adsorb at growing Ag particles, controlling their growth and leading to the spherical shape. The mp-Ag/Ag slides were yellow-tinted because of surface plasmon resonance effect, which was more pronounced for films with smaller grain size. For the PVP-assisted film, the optical
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • -light irradiation suggested that the mechanism of bacteria inactivation was initiated by plasmonic excitation of titania by localized surface plasmon resonance of gold. The antifungal activity tests showed efficient suppression of mycelium growth by bare titania, and suppression of mycotoxin generation
  • localized surface plasmon resonance (LSPR) at ca. 410–430 nm), they were easily oxidized under ambient conditions, and the resultant silver deposits on titania were composed of a zero valent silver core and a silver oxide shell. XRD analysis confirmed XPS data showing silver in three oxidation states (Ag(0
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • improved response (τRes = 9 s) and recovery time (τRec = 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures
  • response/recovery times. The various origins of these properties are commonly assigned to the following two phenomena: (i) a surface plasmon resonance (SPR) effect of plasmonic gold nanoparticles (Au NPs) could certainly take place and contribute to the electrical transport behavior for Au-decorated ZnO
  • surface plasmon resonance band of Au NPs, which further confirms the formation of the hybrid Au NP/ZnO structures [24][25]. Using the Kubelka–Munk function and Tauc plots, the band gaps (Eg) were determined as 3.3 and 3.2 eV for ZnO and Au NPs/ZnO, respectively, as shown in Figure 3b. It can be seen that
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • : localized surface plasmon resonance (LSPR); noble metal; plasmonic photocatalyst; reactive radicals; Schottky junctions; visible light; Review Introduction Photocatalysts have played and will continue to play a pivotal role in environmental and energy applications in order to fulfil the needs of the
  • will lead to a pathway for better utilization of the solar spectrum. The invention and progression of plasmonic photocatalysts laid a foundation for the successful utilisation of longer wavelengths, known as “visible light photocatalysis”. The localised surface plasmon resonance (LSPR) is a unique
  • localized surface plasmon resonance (LSPR) evolution in a noble metal particle irradiated by a light source. Reprinted with permission from [15], copyright 2003 American Chemical Society. (b) LSPR decay processes. Reprinted with permission from [16], copyright 2014 Nature Publishing Group. The metallic
PDF
Album
Review
Published 19 Feb 2018

Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers

  • Yaroslav I. Derikov,
  • Georgiy A. Shandryuk,
  • Raisa V. Talroze,
  • Alexander A. Ezhov and
  • Yaroslav V. Kudryavtsev

Beilstein J. Nanotechnol. 2018, 9, 616–627, doi:10.3762/bjnano.9.58

Graphical Abstract
  • hydro- and organosols with the data of numerical simulations of the surface plasmon resonance, we find that nanoparticles do not aggregate and confirm the transmission electron microscopy data regarding their shape and size. The proposed approach can be effective in preparing hybrid composites without
  • 436 nm [51]. Thus, the presence of a CTAB bilayer at the Au nanorod surface should noticeably shift the maximum position of the TM plasmon resonance in water and benzene. This can be checked by simulations for a model in which a single nanorod is coated with a surface layer with the refractive index
  • -stabilized Au nanoparticles start to aggregate immediately, and after 11 h of aging, no plasmon resonance is detected. Simultaneously, polymer-stabilized particles keep their optical properties almost unchanged throughout all 11 h of aging. Conclusion In this study, we have shown that CTAB-coated Au nanorods
PDF
Album
Full Research Paper
Published 16 Feb 2018

Colloidal solution of silver nanoparticles for label-free colorimetric sensing of ammonia in aqueous solutions

  • Alessandro Buccolieri,
  • Antonio Serra,
  • Gabriele Giancane and
  • Daniela Manno

Beilstein J. Nanotechnol. 2018, 9, 499–507, doi:10.3762/bjnano.9.48

Graphical Abstract
  • analysis provides the basis for the production of a colorimetric label-free sensor for ammonia. Overall, surface plasmon resonance increases when ammonia concentration rises, although the functional trend is not the same over the entire investigated ammonia concentration range. Three different ranges have
  • particular silver nanoparticles (AgNPs), are often considered for analytical application because of their peculiar optical and electrical properties [13]. The surface plasmon resonance (SPR) properties of metal nanoparticles are considered very useful for the use of colloidal solutions in the field of
  • cations and ammonia anions are formed, the formation of Ag nanoparticles is inhibited. Recent results seem to disagree with previous reports about the role of ammonia and show an increase in the plasmon resonance intensity of silver nanoparticles synthesized in the presence of ammonia [23][24]. On the
PDF
Album
Full Research Paper
Published 09 Feb 2018

Nematic liquid crystal alignment on subwavelength metal gratings

  • Irina V. Kasyanova,
  • Artur R. Geivandov,
  • Vladimir V. Artemov,
  • Maxim V. Gorkunov and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2018, 9, 42–47, doi:10.3762/bjnano.9.6

Graphical Abstract
  • a liquid crystal into a hybrid system is especially interesting as it can result in even more novel and interesting properties. In our recent work, we showed that liquid crystals strongly affect both the plasmon resonance and light polarization properties of subwavelength metal gratings [9
  • = 1/3. For this grating both TM and TE-mode FT spectra show pronounced splitting. However, it is known [9] that for the gratings with this geometry there is a plasmon resonance for the TM mode and the transmittance resonance for the TE mode in the spectral range of 500–600 nm. Therefore, the Fabry
PDF
Album
Full Research Paper
Published 04 Jan 2018

Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

  • Agata Siarkowska,
  • Miłosz Chychłowski,
  • Daniel Budaszewski,
  • Bartłomiej Jankiewicz,
  • Bartosz Bartosewicz and
  • Tomasz R. Woliński

Beilstein J. Nanotechnol. 2017, 8, 2790–2801, doi:10.3762/bjnano.8.278

Graphical Abstract
  • biology [20] due to their optical properties. These properties are related to the interaction of light with electrons on the NP surface. At a specific frequency of light, the oscillation of electrons on the Au NP surface causes an effect called localized surface plasmon resonance. This phenomena can
  • result in absorption or scattering of light (Figure 1b). Depending on the size, concentration or shape of the particles, the plasmon resonance can appear at different wavelengths. Moreover, NPs can also provide different properties for the host material. For example, Au NPs have a tendency to lower the
  • a behavior in terms of plasmon resonance tuning, i.e., NPs absorbing at a selective wavelength can heat LC molecules, thus shifting the propagation spectrum. A similar effect can be observed in PLCFs, but the mechanism of PBG tuning was thermally induced [33]. However, we believe that the observed
PDF
Album
Full Research Paper
Published 27 Dec 2017

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • visible-light irradiation. In addition to the microstructure and high specific surface area, the enhanced photocatalytic activity was mainly caused by the surface plasmon resonance of Ag nanoparticles, and the high stability of AgSCN resulted in the long-term stability of the photocatalyst product
  • irradiated for 3 h, indicating the slow reduction of AgSCN under UV irradiation. UV–vis diffuse reflectance spectra of M0, M1, M2, M3, M4, and M5 are shown in Figure 2a. Here, the characteristic absorption of AgSCN appears at 200–350 nm and that from the surface plasmon resonance of Ag particles is above 350
  • presence of silver particles not only improves the photocatalytic efficiency, but also enhances the electric field strength around AgSCN due to the surface plasmon resonance, which in turn enhances the optical transition of midgap defect states of AgSCN. All these conditions contribute to the strong
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

Impact of titanium dioxide nanoparticles on purification and contamination of nematic liquid crystals

  • Dmitrii Pavlovich Shcherbinin and
  • Elena A. Konshina

Beilstein J. Nanotechnol. 2017, 8, 2766–2770, doi:10.3762/bjnano.8.275

Graphical Abstract
  • addition, nanoparticles can induce other new functions in liquid crystals, including improved response time [14][15], surface plasmon resonance [16], and improvements in alignment [17]. The ionic contamination of LCs remains one of the challenges to LC technology. Ionic conductivity negatively affects LC
PDF
Album
Letter
Published 21 Dec 2017

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • useful new platform for chemical/spectroscopic sensing. Keywords: finite-difference time-domain; nanoimprint soft lithography; plasmonics; surface plasmon resonance; Introduction Studies of surface plasmons have attracted significant attention due to the diverse range of applications and processes in
  • are excited by electromagnetic radiation incident at a metal/dielectric interface. This results in an evanescent decaying electric field that extends from the metal surface for ≈100–200 nm (surface plasmon polaritons), or it can also manifest as a localized surface plasmon resonance at the surface of
  • , and nanoscale holes or voids to effect couplings and further obtain stronger electromagnetic fields and higher spatial resolution from localized surface plasmon resonance (LSPR) [18][19][20][21][22][23][24][25][26][27]. Many fabrication methods have been described that provide structures capable of
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017
Other Beilstein-Institut Open Science Activities