Search results

Search for "Raman spectroscopy" in Full Text gives 334 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • characterized by micro-Raman spectroscopy (JY-HR 800, 532 nm wavelength YAG laser). The element composition and chemical bonding of samples were examined by X-ray photoelectron spectroscopy (XPS, PHI-5702, Mg KR X-ray, 1253.6 eV). The pore size distribution was measured by the Barrett–Joyner–Halenda method
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • characterization the natural anisotropy of 1T’-WTe2. In this paper, we present a combined experimental and quantitative study on the anisotropic optical and electronic properties of mechanically isolated 1T’-WTe2. Through a systematic characterization including Raman spectroscopy, X-ray photoelectron spectroscopy
  • parameters to be a ≈ 3.49 Å and b ≈ 6.32 Å, respectively, which are in excellent agreement with a previous report [28]. In order to gain further information on the crystal structure, Raman spectroscopy was performed on 1T’-WTe2 nanosheets, as shown Figure 1d. All of the peak positions are consistent with
  • photodetectors. Conclusion In summary, with the combination of XPS spectroscopy, HR-TEM, Raman spectroscopy, ADRDM and angle-resolved electrical measurements, we successfully revealed the in-plane optical and electrical anisotropy of 2D layered 1T’-WTe2. Furthermore, we presented the highly anisotropic
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • -plasma-treated sample has the highest graphitic content on the surface. This result contradicts the Raman spectroscopy result where the plasma-treated sample in fact showed more defects. It must be emphasized that in the present work no peak fitting was carried out on the C 1s peak to quantify the
  • out for 40 min at 20% of the maximum power. In the present work a capacitively coupled parallel plate rf plasma was used. The separation between the plate was 10 cm and the samples were always placed on the bottom plate without any further connections. Raman spectroscopy Raman measurements were
PDF
Album
Full Research Paper
Published 13 Aug 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • were additionally characterized by Raman spectroscopy. In this way it is demonstrated that by varying the parameters during the electrodeposition and CVD steps, a tuning of the structural parameters of the hierarchical electrodes is possible. The suitability of the hierarchical electrodes for
  • electrocatalysts. The bottom-up synthesis of these nanocomposites was monitored using scanning electron microscopy (SEM) and Raman spectroscopy, and it is demonstrated that the hierarchical structures can be tuned with respect to thickness, length, and density of the CNTs. The activity of the Pt-CNT/CNT/GC
  • /GC) were characterized by Raman spectroscopy (Figure 5) after Fe removal in concentrated HNO3 (before Pt electrodeposition). Both electrodes show the typical D-band at ≈1355 cm−1 und the G-band at ≈1600 cm−1, which are associated with structural defects within the carbon lattice and crystalline
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • . This low-cost, highly sensitive, and biocompatible paper-based SERS substrate holds considerable potentials for the detection and analyses of chemical and biomolecular species. Keywords: cellulose nanofiber; composites; nanoarchitectonics; silver nanoparticle; surface-enhanced Raman spectroscopy
  • composed of silver nanoparticles anchored on cellulose nanofibers was fabricated, which is shown to be a highly effective substrate for surface-enhanced Raman spectroscopy (SERS). SERS, a powerful molecular spectroscopy method, is widely used in the trace detection and characterization of various chemical
  • cellulose matrix, this substrate exhibits a high SERS activity. A sub-attomolar-level detection limit is achieved for the detection of Rhodamine 6G. The substrate may be applicable for facile and sensitive analyses of chemical and biomolecular substances using Raman spectroscopy. Experimental Chemicals
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • characterization was performed using Raman spectroscopy and X-ray diffraction (XRD, see Table 1 and Supporting Information File 1, Figure S2 for Raman spectra). In Raman spectroscopy, a useful parameter for carbon nanotubes is the ratio between the D band (ID) at ≈1380 cm−1, attributed to the defects of the CNT
  • -range order in a sample. Finally, another parameter, measurable by Raman spectroscopy that is relevant to catalyst preparation, is the LD: LD is a typical inter-defect distance that we have measured as described in [41]. A lower ID/IG (and higher LD) is obtained for the CNT sample and a higher ID/IG
  • carbon supports but this should be detrimental to the stability and electronic conduction), some compromises have to be made. Figure 2 shows the evolution of the ID/IG ratio from Raman spectroscopy and the percent of surface heteroatoms from XPS in the investigated supports. The ID/IG ratio reflects the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • spectroscopy. Density functional theory calculations were carried out to support the experimental observations. Keywords: aberration-corrected STEM; DFT; misfit-layered compounds; nanotubes; Raman spectroscopy; Introduction Since their discovery in 1992 [1], inorganic nanotubes (INTs) have attracted the
  • Sr content was undertaken. In particular, high-resolution transmission electron microscopy and Raman spectroscopy served as the main experimental tools to analyze these new nanotubes. Density functional theory (DFT) calculations were used to study the chemical bonding and the stability of the SrxLa1
  • and drying a drop of this dispersion onto a lacey-carbon-supported Cu/Ni grid. To minimize contamination during imaging, the TEM specimens were heated in a vacuum chamber at 60 °C overnight followed by 3 seconds of oxygen plasma exposure prior to the electron microscopy analysis. Raman spectroscopy
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • ) Nonlinear transmission measurement setup for the Fe3O4 SA. (d) Nonlinear optical absorption characteristics of the FONP-based SA. (a) Energy-dispersive spectroscopy, (b) Raman spectroscopy, (c) X-ray diffraction pattern, and (d) UV–vis–NIR spectrum of the as-prepared Fe3O4 cluster-structured nanoparticles
PDF
Album
Full Research Paper
Published 20 May 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • . Sylwestra Kaliskiego Street, 00–908 Warsaw, Poland 10.3762/bjnano.10.105 Abstract Surface-enhanced Raman spectroscopy (SERS) is a very promising analytical technique for the detection and identification of trace amounts of analytes. Among the many substrates used in SERS of great interest are
  • percolation threshold has the SERS signal about four times lower than the highest signal sample. Keywords: metal island film; plasmon resonance; semicontinuous silver film; SERS; surface-enhanced Raman spectroscopy; Introduction Noble metal nanostructures exhibit exceptional optical properties. They can
  • nanoscale regions called “hot spots” [3]. These “hot spots” can be utilized in surface-enhanced Raman spectroscopy (SERS) [4], allowing for the detection of trace amounts of chemicals and biological materials, down to the single molecule or cell level [5]. SERS was discovered in the 1970s [6][7][8] and a
PDF
Album
Full Research Paper
Published 15 May 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • mixed phase, TiO2(B) and trititanate layered TNW structure was confirmed by powder X-ray diffraction (PXRD) as well as Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. The details can be found in Supporting Information File 1. High-resolution scanning electron microscopy (HR-SEM
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019
Graphical Abstract
  • region using Raman spectroscopy and transmission electron microscopy. In this way, the Raman spectra and the surface density of the SERS tags are correlated directly, showing that 1 tag/µm2 is enough to generate an intense signal above the noise level at 633 nm with an excitation power of only 0.65 mW
  • -section of molecules, Raman signals are exceptionally intense when the SERS effect occurs simultaneously with the electronic resonance of the molecule at the excitation wavelength used for Raman spectroscopy, a condition called surface-enhanced resonant Raman scattering [9][10][11][12]. Resonant SERS
  • required for the detection of an intense signal in real operating conditions [13][18][32][33], which often employ an ordinary micro-Raman spectroscopy set up [34] or portable Raman spectrometer [35][36][37]. In recent years, this has fostered a number of studies aimed at quantifying SERS performance from
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • single heat-treatment step. The subsequent thermal oxidation concurrently achieved nanoscale surface etching and loading with SnO2 nanoparticles. The nanoscale-etched and SnO2-loaded surface was characterized by field-emission scanning electron microscopy (FESEM), Raman spectroscopy, and X-ray
  • demonstration of this surface-structure change is difficult through FESEM observation only, Raman spectroscopy and electrochemical measurements can show clear differences as described below. The degree of the surface etching depends on the temperature of the thermal oxidation (Figure 1e and Figure S2
  • , Supporting Information File 1). The surface was roughened with an increase in the temperature. It should be noted that the roughening was uniformly attained over the entire surface at every treatment temperature. Edge plane exposure The further evaluation of the etched surface was carried out by Raman
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • apparently exposing the Mo underlayer. Ni films subjected to lower heating rates (Figure 1c) exhibit smoother surfaces with the presence of distant large pores. It is worth noting that micro-Raman spectroscopy measurements revealed that the quality of the graphene layer is roughly the same in the hillocks
  • and the voids, suggesting that a thin Ni film is still covering the whole active area of the device. Graphene layers were characterized by Raman spectroscopy with a B&BTek S415-532S spectrometer using a 532 nm laser operated at powers up to 50 mW. The Raman probe is mounted on a microscope that can
  • reactive species were able to reach the graphene surface by efficient diffusion through the gas discharge [22]. The process parameters were previously optimized (50 W, 25 mTorr and 25 sccm O2 flow for our system). The samples were characterized by Raman spectroscopy before and after each plasma treatment
PDF
Album
Full Research Paper
Published 29 Apr 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • . Keywords: nanofabrication; pulsed laser deposition; SERS substrates; silver nanoisland films; surface-enhanced Raman spectroscopy; X-ray photoelectron spectroscopy; Introduction In recent years, SERS has been intensively investigated as a sensing tool in many applications [1][2][3]. Of particular interest
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • on the surface were transform to CuO nanoparticles during hydrothermal synthesis, but in bulk of fiber, retained the phase of Cu. Raman spectroscopy was used to estimate a crystalline phase and the degree of graphitization of the subsequent synthesized samples (Figure 4a). CNF exhibited two
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • Mo by Re atoms [28], electron-beam irradiation [31] and hot-electron injection [32]. Recently, it was reported that MoS2/reduced graphene oxide (rGO)/S cathodes for Li–S batteries exhibit outstanding performance. X-ray photoelectron spectroscopy and Raman spectroscopy showed that few-layered MoS2 is
PDF
Album
Full Research Paper
Published 26 Mar 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • flexible silicon nanowires (SiNWs) substrates for surface-enhanced Raman spectroscopy (SERS) applications. The novel SERS substrates are described in detail considering three main aspects. First, the key synthesis parameters for the flexible nanostructure SERS substrates were optimized. It is shown that
  • -mercaptophenylboronic acid; surface-enhanced Raman spectroscopy (SERS); vapour–liquid–solid; Introduction The mechanism of surface-enhanced Raman spectroscopy (SERS) [1] is predominantly described by electromagnetic theory, which covers most of the observed features [2]. Specially designed nanostructured surfaces
  • synthesized samples was monitored with a Jeol JSM 7000F scanning electron microscope under 10 kV discharge. Raman spectroscopy measurements were performed using a Jobin Yvon T64000 Raman spectrometer in micro-single configuration. The laser power at 532 nm on the sample in the ca. 1 μm spot was 1–2 mW. For
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • conduction transition. In order to gain further knowledge about phase transitions and carrier types, further studies such as synchrotron powder X-ray diffraction, heat capacity, Raman spectroscopy, Hall effect and or positron annihilation spectroscopy measurements would be required, which can be the part of
PDF
Album
Full Research Paper
Published 04 Mar 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • , showing its great potential application in biochemical sensing and food security. Keywords: Ag nanofilm; glasswing butterfly; pesticide; surface-enhanced Raman scattering (SERS); Introduction Surface-enhanced Raman scattering (SERS), an extension of conventional Raman spectroscopy, is a powerful
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • studied. Transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy are used to analyze the resulting gas-sensitive hybrid films. Among the different nanomaterials tested, short-chain thiols having a hydrophilic head group, self-assembled onto Au-decorated carbon nanotubes
  • will be discussed in detail below. The crystallinity of oxygen-plasma-treated MWCNTs decorated with gold nanoparticles was characterized by Raman spectroscopy. Taking the intensity ratio of the D/G bands into consideration, the material presents a low level of crystallinity with defects caused by the
  • decoration of CNT sidewalls with Au nanoparticles, preventing their mobility and coalescence. The different thiols employed in this work were characterized by Raman spectroscopy (see Figure 2). A Peltier cell was used in order to keep samples at 4 °C and stabilize them, because unbound thiols present high
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • of the sapphire substrate. This conclusion is based on a thorough ex situ characterization after CVD growth using differential reflectance spectroscopy (DRS), Raman spectroscopy, photoluminescent spectroscopy (PL), optical microscopy (OM), and atomic force microscopy (AFM). Actually, from the first
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering

  • Yarong Su,
  • Yuanzhen Shi,
  • Ping Wang,
  • Jinglei Du,
  • Markus B. Raschke and
  • Lin Pang

Beilstein J. Nanotechnol. 2019, 10, 549–556, doi:10.3762/bjnano.10.56

Graphical Abstract
  • details see Supporting Information File 1). The metal substrates were first submerged in 1 mM benzenethiol solution in ethanol for 2 h and then gently rinsed in ethanol for 1 min, followed by drying in nitrogen flow [24]. Raman spectroscopy was performed using a standard Raman microscope (HORIBA LabRAM HR
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • generation of hot electrons in the substrate within the close proximity of the interface can lead to a more intensive electronically stimulated surface atom desorption [13][14], which already occurs directly in a 2D material under ion irradiation [13][15]. In [16] it was shown by Raman spectroscopy and
PDF
Album
Full Research Paper
Published 22 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • Raman spectroscopy investigations were carried out on PtSe2 nanosheets deposited on Si substrates in the temperature range 100–506 K. The shifts in Raman active Eg and A1g modes as a function of temperature were monitored. The temperature coefficient for both modes was calculated and was found to match
  • future sensor devices. Keywords: nanosheets; PtSe2; Raman spectroscopy; sensor; thermal effect; Introduction Graphene, the most well-studied example of the two-dimensional (2D) aromatic compounds, is the building block of all forms of carbon allotropes [1]. In recent years, it has been widely studied
  • carried out at ambient pressure and room temperature. Results and Discussion Structural characterization The structural characterization was carried out using X-ray diffraction (XRD) and Raman spectroscopy. Figure 1a shows the typical XRD pattern of the as-prepared sample deposited on a Si substrate. XRD
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • influence on the final material properties was characterized by using physisorption analysis with nitrogen as well as carbon dioxide, X-ray diffraction, temperature-programmed oxidation (TPO), Raman spectroscopy, SEM and TEM. The results showed that this improved route allows one to greatly vary the
  • Raman spectroscopy. The XRD patterns for the different catalyst loadings are given in Figure 3a. The CDC-Ni0 reference material shows no reflexes indicating an amorphous character, which is in agreement with the literature [15]. Once adding graphitization catalyst (CDC-Ni5 to CDC-Ni60) clearly graphitic
  • contrast to TPO, XRD and TEM, no strong differences in crystallinity of the samples can be observed by using Raman spectroscopy. All spectra are characterized by the presence of two more or less overlapping D- and G-bands centered at ca. 1325 and 1583 cm−1. CDC-Ni0 shows a slightly higher level of disorder
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019
Other Beilstein-Institut Open Science Activities