Search results

Search for "cross section" in Full Text gives 498 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • nanospheres (Figure 2d). By further increasing the oxidation time to 30 min, an increase in microsphere size and number is seen at the surface (Figure 2e,f). The evolution of film thickness was examined by SEM cross-section imaging (Figure 3). The results show that the as-grown films exhibit a columnar
  • increased in size (Figure 3e,f). To investigate whether the formed nanoporous microspheres have a hollow interior or not, a cross-section SEM specimen from the sample oxidized for 30 min was prepared using focused ion beam (FIB) (Figure 3e). According to the results, the microspheres were not hollow and the
  • equipped with an FEI EDS detector and a high-angle annular dark-field (HAADF) detector operating at 200 kV. For qualitative elemental chemical analysis, ESPRIT software from Bruker was used. The cross-section film (thickness <100 nm) was prepared using a SEM/FIB Versa 3D dual beam instrument from FEI
PDF
Album
Full Research Paper
Published 22 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • between the two carbon atoms, highlighted in red. (c) Orthogonal unit cell of Cu(111), which is the search range in x and y directions. Energy landscapes from preparatory BOSS simulations. (a) θ–ω 2D cross section of the 3D PES in the camphor conformer search, featuring a single minimum and an energy
  • barrier of 0.1 eV for methyl group rotation. (b) α–β 2D cross section of the 3D PES in the search for adsorption orientation of camphor on Cu(111). The landscape features multiple local minima and a higher-energy region at β ≈ 90°. (c) PES of the 2D translational x–y search of the adsorption site of
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • . Prominent examples are SERS and TERS, where the intrinsically small Raman scattering cross-section is enhanced by several orders of magnitude, making single-molecule spectroscopy feasible. These spectroscopic techniques have shown tremendous progress in the last two decades [29][30][31][32]. Under high
PDF
Editorial
Published 07 Oct 2020

Design of V-shaped cantilevers for enhanced multifrequency AFM measurements

  • Mehrnoosh Damircheli and
  • Babak Eslami

Beilstein J. Nanotechnol. 2020, 11, 1525–1541, doi:10.3762/bjnano.11.135

Graphical Abstract
  • selecting an appropriate cantilever. Theory Unlike the uniform cross section of rectangular cantilevers throughout their length, the cross section of V-shaped cantilevers varies over the length. Therefore, in order to model them as Timoshenko’s beam, the equation of motion needs to be divided into two
  • portions as shown in Figure 1. The first portion, shown in Equation 1, is the equation of motion related to the length of the cantilever base to the point where the two legs merge. For this range, the cross section is a rectangle on both sides: where 0 ≤ x ≤ (L – L′). In Equation 1 and Equation 2, K, G, A1
  • , y(x,t), ϕ(x,t), ρ, I, E and c are shear coefficient, shear modulus, area of cross section, transverse deflection of the beam, bending angle of the beam, mass density of the beam, moment of inertia of cross section, Young’s modulus, and internal damping of the cantilevers, respectively. The cross
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • between the connected Ir clusters. The SEM cross-section measurements show that the film has an average thickness of approx. 12 nm (see inset of Figure 2). The fabricated nanoparticles show a good compromise between process complexity and surface coverage with nanoparticles. With this bottom-up approach
  • images after 90 cycles of Ir ALD. The inset shows the corresponding cross section. Microscope image of etched structures. SEM images of etched structures (with 50 mmol/L H2O2 and 1.73 mol/L HF for 10 min) using Au particles. (a, b): Cross section; (c, d): top view; (e): top view from back-scattering
  • detector with highlighted Au particles. The scale applies to all images. SEM images of etched structures (with 145 mmol/L H2O2 and 1.73 mol/L HF for 10 min) using Au particles showing sticking structures. (a): Top view; (b): cross section. Measured reflectance of Au wafers after 10 min of etching in HF
PDF
Album
Full Research Paper
Published 23 Sep 2020

Superconductor–insulator transition in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2020, 11, 1402–1408, doi:10.3762/bjnano.11.124

Graphical Abstract
  • –Schön plasmons produces a logarithmic interaction in space–time between different QPSs where the magnitude is controlled by the wire diameter (cross section) [5]. For sufficiently thick wires this interaction is strong and the QPSs are bound in close pairs. Accordingly, the (linear) resistance of such
  • quasi-one-dimensional superconducting wires [5] with geometric capacitance C and kinetic inductance is controlled by the parameter [5] which is proportional to the square root of the wire cross section, s. It follows immediately from the analysis of [5] that, provided the two superconducting wires
PDF
Album
Full Research Paper
Published 14 Sep 2020

Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

  • Jeremiah Croshaw,
  • Thomas Dienel,
  • Taleana Huff and
  • Robert Wolkow

Beilstein J. Nanotechnol. 2020, 11, 1346–1360, doi:10.3762/bjnano.11.119

Graphical Abstract
  • probe the vacancy’s depth. Both of these dihydride variants can be compared to the final example of a dihydride pair in Figure 3e,f. It interestingly appears remarkably similar to the normal dimer cross-section, with only slight variation at the position of the outermost H atoms. The lack of a hydrogen
  • originates above one side of a dimer, while the SiH2 is centred between the two atoms of a dimer. The neutral point defect in Figure 3q,r displays as a slight decrease in the minima above the defect. The almost normal appearance of the defect cross section compared to the regular surface suggests a similarly
  • is actually measuring a signal from the back-bonded and bulk silicon atoms. This is verified by comparing the magnitude of this smaller frequency shift to an equivalent measurement of other back-bonded Si atoms, as would be measured in a cross section taken between dimers (burgundy line in Figure 4n
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • the electrode alternating current (AC) were performed at frequencies ranging from 0.01 Hz to 100 kHz. Results and Discussion The surface and cross-section morphologies of the CNFs before and after carbonization were examined via SEM and TEM, respectively, as shown in Figure 2. According to Figure 2a
PDF
Album
Full Research Paper
Published 27 Aug 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • nowadays widely used, add an optical trap repositioning feedback loop to its control software, and use a thin absorptive layer on a substrate of an experimental chamber as a heat source. Experimental chamber and laser-induced heating. (a) Chamber cross section. A 5 μm thick liquid layer is sandwiched
  • for a single 200 nm particle. (a) 2D histogram of particle positions. (b) Cross section of the effective potential in x- and y-directions. Manipulation of a 200 nm nanoparticle in water. (a) The trajectory of the particle. (b) Time dependence of x- and y-position of the particle during the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Vibration analysis and pull-in instability behavior in a multiwalled piezoelectric nanosensor with fluid flow conveyance

  • Sayyid H. Hashemi Kachapi

Beilstein J. Nanotechnol. 2020, 11, 1072–1081, doi:10.3762/bjnano.11.92

Graphical Abstract
  • /interface effects, the pull-in voltage and critical fluid velocity reach zero later than the rest of the parameters. Fluid-conveying multiwalled piezoelectric nanosensor. (a) Illustration of van der Walls forces between two adjacent tubes of a multiple shell cross section of a multiwalled carbon nanotube
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • affinity to Au but none to TiO2. Moreover, the Raman spectrum of MBA is well known and the molecule demonstrates a large scattering cross section [30]. For the functionalization of TiO2/Au surfaces, MBA was diluted in ethanol at a concentration of 2.9 mM. The TiO2/Au samples were then soaked in the
  • signal of the empty sensor is designated as “Apt+MCH”. It mostly reflects the signal of the aptamer as MCH is known to have a very low Raman cross section and is thus not expected to yield a significant signal. From the comparison between the spectra of the empty sensor (Apt+MCH) and of the hormone (E2
PDF
Album
Full Research Paper
Published 14 Jul 2020

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • with diameters of about 50 nm and oriented normally to a InP wafer, i.e., along the crystallographic [100] orientation, was obtained after anodic etching at elevated applied voltages [14]. High-aspect-ratio GaAs pillar arrays with triangular cross section were prepared by combining colloidal crystal
  • surface orientation, with an angle of approximately 109° between the pores. The pores tend to have a triangular cross section while the pore walls and tips exhibit a pronounced crystallographic anisotropy. A specific characteristic feature of crystallographically oriented pores is their ability to
  • shutter was used in the relaxation experiments. The signal from the source measure unit was fed to computer via IEEE-488 interface for further data processing. The measurements were performed at 300 K. SEM images in cross section of porous GaAs layers for three different conditions of anodization in 1.75
PDF
Album
Full Research Paper
Published 29 Jun 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • rectangular cross section between the waveguides, while the 16-waveguide device has a cylindrical fluidic microbath with a diameter of 15 μm. Using Lumerical’s FDTD solutions, we obtain the energy density U in the central part of these devices, assuming the beams are emitted in phase. The results are
  • with sample fluid. Among the devices, the diameter of the cylinder is in the range of 5–60 µm. For the 2-waveguide device, the microbath is shaped as a linear channel with a rectangular cross section (Figure 4a). For the microbath we face two issues, namely the entrapment of air bubbles during filling
  • scale indicating the energy density is the same. Main steps of the fabrication process of the multi-waveguide trapping and Raman devices based on Si3N4 waveguides. Under each cross section the step is mentioned. The cross section of step d) is at the chip edge, where the waveguide reaches a thickness of
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

A set of empirical equations describing the observed colours of metal–anodic aluminium oxide–Al nanostructures

  • Cristina V. Manzano,
  • Jakob J. Schwiedrzik,
  • Gerhard Bürki,
  • Laszlo Pethö,
  • Johann Michler and
  • Laetitia Philippe

Beilstein J. Nanotechnol. 2020, 11, 798–806, doi:10.3762/bjnano.11.64

Graphical Abstract
  • samples with 8 nm Cr sputtered onto these films. It should be noted that measuring the thickness of the thin films as well as obtaining accurate values is very difficult due to the roughness and large surface area (2.5 cm2 in diameter) of the AAO films. This can be seen in the FESEM images of the cross
  • section of an AAO film after FIB cutting (Figure S4, Supporting Information File 1). The x and y values calculated from the proposed model were plotted as a function of the x and y values from the reflectance measurements, in order to check the validity of the proposed model (Figure 5a). In order to
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • was broken by bending the samples prior to removal of Al and AAO, exposing the internal structure of the nanocolumn as shown in Figure 3. Figure 3a shows the method used to observe the cross section of the sample. Figure 3b is the cross section of the AAO template, and we find that there is no
  • coverage of the surface of the template. Figure 3c shows the cross section of a TNC sample. Comparing Figure 3b and 3c, we find that TiO2 perfectly covers the surface of AAO, the nanocolumn is a hollow structure, and the top hole still exists. As can be seen from Figure 3d, due to the low thickness of Ag
  • field distribution of arrays with different structures at 457 and 320 nm. In order to further illustrate the effect of structural changes on the electric field distribution of arrays, the XY plane and the XZ plane are chosen to analyze the arrays. The XY plane chooses the cross section at 75 nm and the
PDF
Album
Full Research Paper
Published 05 May 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • location of the point contact nor any reproducible production of point contacts. Nevertheless, quantized conductance plateaus as a function of time were still observed for these bow-tie structures during EM. It turned out that the existence of several grains in the cross section of these Ag structures is
  • planes. Secondly, due to its high directionality, EM thins one grain while depositing the material on an adjacent grain. Therefore, the local electrical resistance is determined by the contact area between the grain that is thinned and the adjacent grain that is taking up the material. Only this cross
  • section and its variation by EM is considered. Thus, deviations due to unknown step densities and local strain are ignored when considering only high-symmetry directions of the interface, as we do in the following. Figure 3 represents the FT of the conductance histogram in Figure 2 of bow-tie structures
PDF
Album
Full Research Paper
Published 22 Apr 2020

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • grown on STO (green triangles), LAO (purple diamonds), and LSAT (dark cyan pentagons) substrates; (c) BTO/ LSMO bilayer with tLSMO = 20 nm (blue circles), 27 nm (green triangles) and 40 nm (black squares). Continuous red lines correspond to numerical fits. (a) Cross-section HAADF-STEM image for a BTO
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • (MBraun, O2 and H2O < 2 ppm) and washed with dimethylcarbonate (DMC, Sigma-Aldrich). Cross-section cuts were obtained with an unfocused argon beam cross-section polisher (Jeol, 19520-CCP). The transfer of samples was done inside a transfer vessel to avoid any contact with air. ESM measurements ESM
  • ]. Further information about the set-up with control experiments regarding the origin of the signal can be found in [34]. The ESM measurements were performed on micrometre-sized single particles of a cross-section of the electrodes cut as specified above. Results and Discussion Cell and cathode
  • characterization The ESM analysis was conducted inside of particles of the cross-sections of the fresh and aged cathodes. Two examples of the cross-section structure of the cathodes are given in Figure 1. In Figure 1a the fresh and in 1b the aged cathode cross-section is shown. The electrode consists of particles
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • extinction cross section. It can be up to 50 times larger than the geometrical cross section of the nanoparticle [6]. Ag nanoparticles are also interesting because of the position of the plasmon resonance. The LSPR wavelength maximum of small Ag nanoparticles with a diameter of 10 nm in air is around 420 nm
  • ), they consist of Ag. Detailed EDS analysis of a cross section of a nanoisland is presented in Figure 8c. As can be seen, a thin layer of natural SiO2, about 2 nm thick, is present on the silicon surface. Interestingly, there is no oxide layer around the Ag nanostructures. The quality of the
  • (f) 600 °C; (g) average nanostructure diameter as a function of the annealing temperature. (a) HRTEM image of a cross section of a nanoisland formed from a 3 nm thick film, annealed at 550 °C for 15 min; (b) EDS analysis and (c) detailed EDS analysis of the cross section of the nanoisland. Absorbance
PDF
Album
Full Research Paper
Published 25 Mar 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • cation needs a coordinating headgroup that is able to ionically interact with the perovskite structure. In addition, the molecular projection along the z-axis should fit into the square defined by four corner-sharing octahedral [14]. Thus, the cross section of the ligand is a limiting factor, whereas
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • giving rise to the so-called localized surface plasmon resonance (LSPR). The position and the bandwidth of the LSPR can be modulated by the shape of the nanocrystals and can vary between 400 and 2000 nm. The high absorption cross section (plasmonic nanoparticles absorb photons over a region about ten
PDF
Album
Review
Published 31 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • Timoshenko beam of Figure 3 are described as where u1, u2 and u3 are displacements along the axes x, y and z, respectively, ψ(x,t) is the angular rotation of the beam cross section and w(x,t) is the beam lateral deformation. By replacing the equations of non-zero elements, one can obtain the strain, stress
PDF
Album
Full Research Paper
Published 13 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • distances granting metallic conductance also in this ultimate scaling limit. (iii) The device conductance is largely determined by the rearrangement of only a few atoms in this narrowest cross section, which can take place at a very large bandwidth and unprecedentedly low energy cost [5][6][7][8][9
PDF
Album
Full Research Paper
Published 08 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • with the holding the potential at −0.88 V is shown in Figure 7d. The horizontal cross section on Figure 7b is shown in Figure 7e. It shows that the ≈1 nm height of the Sb deposits was formed at that time. At the bottom of Figure 7b, the height of the Sb deposits reaches to ≈6 nm, which is around 30
  • adlayer is shown with cross section in the image g. (c, d) The electrode potential was held at −0.74 V, followed by formation of a complete monolayer. (e) The electrode potential was scanned back from −0.74 to −0.31 V and then stopped at −0.31 V, followed by dissolution of the monolayer. (f) The electrode
  • direction. STM images of the Sb adlayer structure on Au(111) in 0.25 mM Sb2O3/0.5 M H2SO4 electrolyte at −0.74 V. (a) 50 × 50 nm; (b) 30 × 30 nm; (c) the cross section of image a; (d) the cross section of image b. Sample bias of 50 mV, set point = 0.5 nA and scan rate of 12 ln/s. Integral gain: 2 and
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019
Other Beilstein-Institut Open Science Activities