Search results

Search for "electronic structure" in Full Text gives 234 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

  • Abdulrahman Altin,
  • Maciej Krzywiecki,
  • Adnan Sarfraz,
  • Cigdem Toparli,
  • Claudius Laska,
  • Philipp Kerger,
  • Aleksandar Zeradjanin,
  • Karl J. J. Mayrhofer,
  • Michael Rohwerder and
  • Andreas Erbe

Beilstein J. Nanotechnol. 2018, 9, 936–944, doi:10.3762/bjnano.9.86

Graphical Abstract
  • conductive, not inhibiting further corrosion. The oxide formed on metallic Zn has noticeably different properties than crystalline bulk ZnO, due to the presence of different point defects, which have a strong effect on the electronic structure of the oxide [21][22]. ADXPS was utilized to understand defect
  • levels, electronic structure, and chemical composition of the zinc surface, based on a previously established method [23][24]. Results from the β-CD/ZnO system are shown in Figure 3. Take-off-angles (TOA) close to 90° probe deeper into the volume of the sample, while low TOAs weigh surface contributions
  • from impurities collected through the sample transfer. Due to the high symmetry of the Zn 2p3/2 peak, analysis of the Auger parameter α was needed to understand the electronic structure of the layer (Figure 3c). Figure 3d shows the Zn 3d region, including an inset with the depth dependence of the ZnO
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2018

Synthesis of [{AgO2CCH2OMe(PPh3)}n] and theoretical study of its use in focused electron beam induced deposition

  • Jelena Tamuliene,
  • Julian Noll,
  • Peter Frenzel,
  • Tobias Rüffer,
  • Alexander Jakob,
  • Bernhard Walfort and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 2615–2624, doi:10.3762/bjnano.8.262

Graphical Abstract
  • ]. Values of the hardness >3 eV and softness <0.1 eV indicate high chemical stability and hence 2 can be considered as such, indicating reliability of the approach applied. This nicely corresponds with the experimentally observed properties of 2 (see above). The electronic structure of monomeric 2 is
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2017

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • Konstanz, Germany Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0395, Japan 10.3762/bjnano.8.261 Abstract Diarylethene-derived molecules alter their electronic structure upon transformation
  • particularly promising because of the negligible change of molecular length between the two isomers (i.e., open and closed forms) and the possibility for further chemical functionalization [13][14]. The isomerization upon illumination with appropriate wavelengths tunes the electronic structure of the molecules
PDF
Album
Full Research Paper
Published 06 Dec 2017

Comprehensive investigation of the electronic excitation of W(CO)6 by photoabsorption and theoretical analysis in the energy region from 3.9 to 10.8 eV

  • Mónica Mendes,
  • Khrystyna Regeta,
  • Filipe Ferreira da Silva,
  • Nykola C. Jones,
  • Søren Vrønning Hoffmann,
  • Gustavo García,
  • Chantal Daniel and
  • Paulo Limão-Vieira

Beilstein J. Nanotechnol. 2017, 8, 2208–2218, doi:10.3762/bjnano.8.220

Graphical Abstract
  • deposition (FEBID); photoabsorption; tungsten hexacarbonyl; Introduction The electronic structure of tungsten hexacarbonyl, W(CO)6, has previously been studied by using a variety of different experimental and theoretical methods, with experiments including vacuum ultraviolet experiments in the wavelength
  • ]. The main features have been identified as bands I to V and their main characteristics are discussed below, with a complete overview and assignment of the electronic structure. The TDDFT calculations with SOC predict an important contribution of the triplet states for bands III and IV as discussed
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2017

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • the GaAs nanowires on their electronic structure; ii) a considerable reduction of the density of vertical nanowires, which is almost null for growth on Si(111); iii) the occurrence of a higher WZ phase fraction, in particular for growth on Si(111); iv) an increase of the activation energy to release
  • measurements showed a lower influence of the polytypic structure of the nanowires on their electronic structure. The involvement of Mg in one of the radiative transitions observed for growth on the Si(111) substrate is suggested. Keywords: electronic structure; field effect transistors; GaAs nanowires
  • in the nanowires. The highest mobility was obtained for the highest free hole concentration, suggesting that, in our case, the increase of free holes in the valence band progressively blurs the contribution of the polytypic nature of the nanowires on the electronic structure [61]. The obtained PL
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach. Keywords: electron correlation; electronic structure; quantum transport; spin transport
  • molecules, the hybrid dimer states close to the Fermi level in the the picene/F4TCNQ compound excite a very asymmetric I–V curve with a pronounced diode-like forward/reverse current behavior. Additinally the effect of an applied gate voltage is greatly enhanced [13]. The electronic structure of free
  • the microscopic details of the interface. The question arises of how the substrate interactions change the electronic structure of the molecular material and whether favorable properties for envisaged applications can be realized. Another important aspect for transport and potential applications are
PDF
Album
Full Research Paper
Published 06 Oct 2017

Adsorbate-driven cooling of carbene-based molecular junctions

  • Giuseppe Foti and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 2060–2068, doi:10.3762/bjnano.8.206

Graphical Abstract
  • that the charge rearrangement resulting from the adsorbate gates the carbene electronic structure and reduces the density of carbene states near the Fermi level as a function of bias. These effects result in the cooling of carbene modes at all voltages compared to the “clean” carbene-based junction. We
  • a first-principles, self-consistent description of the junction out of equilibrium based on density functional theory (DFT) and non-equilibrium Green’s functions (NEGF). We show how the change in the electronic structure of the junction induced by the presence of the adsorbate promotes the cooling
  • gating from that of the reduction of carbene DOS near the Fermi level due to the adsorbate. The current-induced heating of adsorbate modes reveals the important role of molecule–adsorbate through-space tunneling. By setting the adsorbate electronic structure elements to zero in the calculations we could
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2017

Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

  • Laura Evangelio,
  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Michaela Gorgoi,
  • Francisco Miguel Espinosa,
  • Ricardo García,
  • Francesc Pérez-Murano and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 1972–1981, doi:10.3762/bjnano.8.198

Graphical Abstract
  • the block copolymers. We have chosen hard X-ray high kinetic energy photoelectron spectroscopy as an exploration technique because it provides information on the electronic structure of buried interfaces. The outcome of the characterization sheds light onto key aspects of directed self-assembly
  • photoelectron spectroscopy (HAXPES) [14]. Photoemission is a well-known technique which provides information on the electronic structure of surfaces. Its high surface sensitivity arises from the small mean free path of the outcoming photoelectrons in solid matter. Using conventional excitation sources, kinetic
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Structural model of silicene-like nanoribbons on a Pb-reconstructed Si(111) surface

  • Agnieszka Stępniak-Dybala and
  • Mariusz Krawiec

Beilstein J. Nanotechnol. 2017, 8, 1836–1843, doi:10.3762/bjnano.8.185

Graphical Abstract
  • obtained electronic structure data of the Si NRs/Si(111) system described above, scanning tunneling microscopy simulations were performed by using the Tersoff–Hamann approach [52]. Results and Discussion Typical Si nanoribbons are several nanometers long and run in one of three high-symmetry directions of
PDF
Album
Full Research Paper
Published 05 Sep 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • (111). Manipulation of the electronic structure of H2TPP(OH)4 on Au(111) [45]: Molecules with two possible states, e.g., of conductivity, can be used as single-molecule switches. This functionality could be applied in nano-scaled molecular-based memory devices or logic gates [64], However, one must be
  • from [44], copyright 2014 Elsevier. (a–e) Manipulation of the electronic structure by applying a voltage pulse with the STM tip at the position marked with a white circle. Converted molecules are marked with green (1→2) or blue (2→1) rectangles. (a–c) 1→2→1 conversion with 2 V pulses for 3 s (feedback
PDF
Album
Review
Published 29 Aug 2017

Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Jean-François Colomer,
  • Alberto Verdini,
  • Luca Floreano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2017, 8, 1723–1733, doi:10.3762/bjnano.8.173

Graphical Abstract
  • higher binding energy values. The valence band spectra of highly fluorinated sample are conversely dominated by the high cross section of the F 2p valence states, whose contribution strongly attenuates the pristine electronic structure from the Fermi level up to 20 eV. In particular, we can assign the
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2017

Transport characteristics of a silicene nanoribbon on Ag(110)

  • Ryoichi Hiraoka,
  • Chun-Liang Lin,
  • Kotaro Nakamura,
  • Ryo Nagao,
  • Maki Kawai,
  • Ryuichi Arafune and
  • Noriaki Takagi

Beilstein J. Nanotechnol. 2017, 8, 1699–1704, doi:10.3762/bjnano.8.170

Graphical Abstract
  • preserves the electronic states localized at the edges near the Fermi level similar to the graphene nanoribbon with zigzag edges [29][30][31][32][33]. Although the electronic structure of SiNR has been studied experimentally [34][35][36], the existence of edge states remains an open question. The
  • pentagonal chain models proposed very recently for SiNRs on Ag(110) [27][28]. Cerdá et al. [27] calculated the energy band structures of various pentagonal chains; some of the pentagonal chains host electronic structure around the Fermi level, which may explain the peak structure observed in our conductance
  • investigated the geometric and electronic structure of SiNRs grown on Ag(110) using STM and STM junction measurements. We found that the dI/dV spectra of SiNRs on Ag(110) and the bare Ag(110) regions are essentially identical, indicating strong interfacial coupling between the SiNR and the Ag(110) substrate
PDF
Album
Full Research Paper
Published 16 Aug 2017

Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

  • Lyubov G. Bulusheva,
  • Yuliya V. Fedoseeva,
  • Emmanuel Flahaut,
  • Jérémy Rio,
  • Christopher P. Ewels,
  • Victor O. Koroteev,
  • Gregory Van Lier,
  • Denis V. Vyalikh and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 1688–1698, doi:10.3762/bjnano.8.169

Graphical Abstract
  • fluorine addition on the DWCNT surface during a particular fluorination procedure, we carried out simulations of the NEXAFS spectra of the fluorinated samples. NEXAFS spectroscopy is widely used for probing the surface chemical functionalities and the electronic structure of CNTs and related nanomaterials
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • ratio between D band and G band (R = ID/IG) indicates structurally ordered graphite crystallites [30][54]. The R value of CNF is around 0.9. A lower R value means a more crystalline material with higher conductivity [56]. Position and intensity of D and G band demonstrate the electronic structure and
PDF
Album
Full Research Paper
Published 07 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • Photocatalytic H2 production through solar water splitting has been widely explored as it has several advantages like easy and abundant availability of raw materials, tunable electronic structure and the fact that combustion of hydrogen in air produces water; hence, this method is ecologically-friendly [96
PDF
Album
Review
Published 03 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • of organic electronics. One of the early applications of Parylene C encapsulation layer in an electronic structure was that of a microelectrode insulator [65]. The Parylene C-covered iridium and tungsten microelectrodes were investigated by means of in vivo and in vitro impedance tests. In vitro
PDF
Album
Review
Published 28 Jul 2017

Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

  • Sebastian Koslowski,
  • Daniel Rosenblatt,
  • Alexander Kabakchiev,
  • Klaus Kuhnke,
  • Klaus Kern and
  • Uta Schlickum

Beilstein J. Nanotechnol. 2017, 8, 1388–1395, doi:10.3762/bjnano.8.140

Graphical Abstract
  • without [5] a chemical reaction between the metal surface and the adsorbed molecule and thus to a hybridization of the molecule with the underlying electron bath of the metal surface. To access the intrinsic electronic structure of molecules using STM, it has been shown that it is in most cases mandatory
PDF
Album
Full Research Paper
Published 06 Jul 2017

Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene

  • Dario Rocca,
  • Ali Abboud,
  • Ganapathy Vaitheeswaran and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2017, 8, 1338–1344, doi:10.3762/bjnano.8.135

Graphical Abstract
  • carrier mobilities. The variety of electronic properties carried by these compounds have the potential to broaden the technological applicability of two-dimensional materials. Keywords: electronic structure; phosphorene; two-dimensional materials; Introduction Over the last ten years, the interest in
  • electronic structure that are markedly different from those of graphene, with, for instance, the existence of a finite bandgap in the band structure [5]. One of the latest newcomers in the family of two-dimensional materials is phosphorene [6][7][8][9], which corresponds to a single layer of black phosphorus
PDF
Album
Full Research Paper
Published 29 Jun 2017

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

  • Sebastian Schimmel,
  • Zhixiang Sun,
  • Danny Baumann,
  • Denis Krylov,
  • Nataliya Samoylova,
  • Alexey Popov,
  • Bernd Büchner and
  • Christian Hess

Beilstein J. Nanotechnol. 2017, 8, 1127–1134, doi:10.3762/bjnano.8.114

Graphical Abstract
  • herringbone reconstruction indicating that the molecule–substrate interaction is of considerable extent. Investigations concerning the electronic structure of Er3N@C80/Au(111) reveals spatial variations dependent on the termination of the Au(111) at the interface. Keywords: adsorption; Au(111); Er3N@C80
  • knowledge about the molecules’ behavior in interaction with possible electrode surfaces. One aspect regards the formation of one respectively two dimensional and addressable arrays. Another important issue concerns the elucidation of the system’s electronic structure and adsorption site dependent effects on
  • it. In order to examine the adsorption characteristics and the electronic structure of Er3N@C80 in consideration of adsorbate–substrate interaction, we performed scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) investigations on sub-monolayer covered W(110) and Au(111
PDF
Album
Full Research Paper
Published 23 May 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • synthesized through reduction and microwave heating [18]. The expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer
  • work for instance reported significant oxygen and carbon incorporation during typical PVD conditions, where substitutional doping of MoS2 with oxygen recently was shown to drastically alter its electronic structure [37][38][50]. Also key effects of, e.g., Nb or Na contamination on electronic properties
  • partly linked with add-atom incorporation or intercalation, also local variations in the structure of MoS2 layers could affect conduction: An expanded interlayer distance of 9.4 Å from molecular intercalation was previously shown to modify the electronic structure of layered MoS2 and to improve catalytic
PDF
Album
Full Research Paper
Published 22 May 2017

Stable Au–C bonds to the substrate for fullerene-based nanostructures

  • Taras Chutora,
  • Jesús Redondo,
  • Bruno de la Torre,
  • Martin Švec,
  • Pavel Jelínek and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 1073–1079, doi:10.3762/bjnano.8.109

Graphical Abstract
  • electronic-structure calculations based on DFT, focusing on fullerene molecules with vacancy defects where the missing C atoms result in increased reactivity and stronger binding with the substrate. We consider C59 molecules, resulting from the removal of a single C atom. While high-energy collisions can
  • energies of these two structures is (in the absence of van der Waals forces) close to zero. This indicates that changes in the electronic structure arising from the vacancy when it is oriented towards vacuum do not significantly affect the metal–molecule contact. In contrast to the value of the defect-down
PDF
Album
Full Research Paper
Published 17 May 2017

Energy-level alignment at interfaces between manganese phthalocyanine and C60

  • Daniel Waas,
  • Florian Rückerl,
  • Martin Knupfer and
  • Bernd Büchner

Beilstein J. Nanotechnol. 2017, 8, 927–932, doi:10.3762/bjnano.8.94

Graphical Abstract
  • on C60 and vice versa. After each MnPc or C60 deposition step C1s, N1s, Mn2p and Au4f core-level and valence-band photoelectron spectra were measured in order to follow changes of the electronic structure and to determine the energy level alignment at the interfaces. Results and Discussion In Figure
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2017

Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate) by oxidative/initiated chemical vapor deposition

  • Alper Balkan,
  • Efe Armagan and
  • Gozde Ozaydin Ince

Beilstein J. Nanotechnol. 2017, 8, 872–882, doi:10.3762/bjnano.8.89

Graphical Abstract
  • coaxial nanotubes. As stated earlier, pHEMA is sensitive to humidity and swells or shrinks in response to the water level in the ambient. As humidity increases, pHEMA swells which results in an increased distance between each polymer chain, affecting the electronic structure of the nanotubes. The swelling
PDF
Album
Full Research Paper
Published 18 Apr 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • ] possess extraordinary physical, chemical and mechanical properties [3]. They are unique nanoscale objects, because their electronic structure (metallic or semiconducting) is solely dependent on the atomic structure [3][4]. Since the discovery of SWCNTs, attempts of many researchers have been aimed at
PDF
Album
Review
Published 11 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • the deposited pillar. The carbon K-edge provides information on the electronic structure of carbon and analysis of characteristic features contained within the energy loss near edge structure (ELNES) indicates whether carbon is amorphous, graphitic or diamond. Figure 3e shows the corresponding
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017
Other Beilstein-Institut Open Science Activities