Search results

Search for "feedback" in Full Text gives 217 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

  • Markus Moosmann,
  • Thomas Schimmel,
  • Wilhelm Barthlott and
  • Matthias Mail

Beilstein J. Nanotechnol. 2017, 8, 1671–1679, doi:10.3762/bjnano.8.167

Graphical Abstract
  • the data presented in Figure 3. However, the corresponding cross-section (Figure 5b, red line) contains two artifacts: the additional elevation at the pillar top is due to the feedback loop of the AFM system causing an overshoot in the height signal. The slope on the right, which seems to be too flat
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2017

High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach

  • Juan Ren and
  • Qingze Zou

Beilstein J. Nanotechnol. 2017, 8, 1563–1570, doi:10.3762/bjnano.8.158

Graphical Abstract
  • control mechanism applied [4][6]. Due to the time delay inevitably induced into the feedback loop for maintaining the RMS tapping amplitude during imaging, errors in tracking the sample topography can quickly result in loss of the tip–sample contact and annihilation of the probe tapping when the imaging
  • deflection (the TM deflection) – in addition to the transitional RMS amplitude feedback control, along with an online iterative feedforward control to track the sample topography. Although this AMLM technique has been proposed recently [1], imaging results of only one polymer sample at large scanning size
  • track the sample topography by the AFM z-axis piezo. AMLM imaging introduces a feedback control of inner–outer loop structure to regulate the mean cantilever deflection per vibration period (called the TM-deflection). Thus the averaged (vertical) position of the cantilever in each tapping period is kept
PDF
Album
Full Research Paper
Published 02 Aug 2017

A review of demodulation techniques for amplitude-modulation atomic force microscopy

  • Michael G. Ruppert,
  • David M. Harcombe,
  • Michael R. P. Ragazzon,
  • S. O. Reza Moheimani and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2017, 8, 1407–1426, doi:10.3762/bjnano.8.142

Graphical Abstract
  • used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct
  • nonlinear tip–sample forces acting on the cantilever, a feedback loop has to be employed in order to maintain a fixed setpoint with respect to the sample; the controller performs disturbance rejection by commanding a nanopositioner in its vertical direction. As the high-frequency cantilever deflection
  • signal cannot be controlled directly, low-frequency measurables such as the change in oscillation amplitude in amplitude-modulation AFM [11] have to be employed. Other feedback variables such as the shift in cantilever resonance frequency in frequency-modulation AFM [13] or the phase shift in phase
PDF
Album
Review
Published 10 Jul 2017

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

  • Sebastian Schimmel,
  • Zhixiang Sun,
  • Danny Baumann,
  • Denis Krylov,
  • Nataliya Samoylova,
  • Alexey Popov,
  • Bernd Büchner and
  • Christian Hess

Beilstein J. Nanotechnol. 2017, 8, 1127–1134, doi:10.3762/bjnano.8.114

Graphical Abstract
  • , with the bias voltage applied to the tip. The generated images were processed using WSxM [13]. The spatially resolved spectroscopy information was taken by I(U) measurements at open feedback loop at every pixel of the corresponding image. In order to obtain dI/dU(U) data a posterior numerical
PDF
Album
Full Research Paper
Published 23 May 2017

BTEX detection with composites of ethylenevinyl acetate and nanostructured carbon

  • Santa Stepina,
  • Astrida Berzina,
  • Gita Sakale and
  • Maris Knite

Beilstein J. Nanotechnol. 2017, 8, 982–988, doi:10.3762/bjnano.8.100

Graphical Abstract
  • quantitatively characterizes the degree of dispersion. The investigated area size is 100 × 100 μm, the feedback system gain is 1.0, the probe movement speed is 142 μm/s, the image resolution is 512 pt, the applied voltage is 0.5 V and the set point is +2. From [24] the composite is characterized by acquiring a
PDF
Album
Full Research Paper
Published 04 May 2017

Scaling law to determine peak forces in tapping-mode AFM experiments on finite elastic soft matter systems

  • Horacio V. Guzman

Beilstein J. Nanotechnol. 2017, 8, 968–974, doi:10.3762/bjnano.8.98

Graphical Abstract
  • oscillates at its fundamental flexural resonant frequency while the amplitude is used as the feedback parameter to record the topography while imaging. When the tip is in close proximity to the sample the amplitude and the phase shift of the oscillation change with the strength of the tip–sample interaction
  • . Ricardo Garcia, Elena T. Herruzo, Marco Chiesa, and Torsten Stuehn for reading the manuscript and giving his valuable feedback.
PDF
Album
Full Research Paper
Published 02 May 2017

Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

  • Hanaul Noh,
  • Alfredo J. Diaz and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 579–589, doi:10.3762/bjnano.8.62

Graphical Abstract
  • other hand, the soft cantilever makes it possible to obtain current and potential correlations for the defective areas without severely altering the structure of the aggregates, by applying only a few nanonewtons of feedback force. Although it is in principle possible to use contact-mode AFM for the
  • . (a)–(d) Topographies consecutively obtained by tapping-mode bimodal AFM using the first eigenmode of the cantilever for the distance feedback control and the third eigenmode for modulating indentation. (e)–(h) The third eigenmode amplitude signal, corresponding to a free amplitude of about 3 nm
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2017

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper
  • developed in “NI LabVIEW” and the conductance was recorded simultaneously with the same program. The electrochemical potential was set using a feedback mechanism, in which the measured conductance was compared with a preset value of quantum conductance of the copper atomic-scale transistor. A transistor
  • are operated. With the feedback mechanism the conductance switching is well controlled between “open” and “quantum conductance” (as displayed in Figure 2 and Figure 3), but the duration of each switching cycle varies. Moreover, the maximum/minimum potential values applied on the gate change from one
PDF
Album
Full Research Paper
Published 01 Mar 2017

Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

  • Steven Ian Moore,
  • Michael G. Ruppert and
  • Yuen Kuan Yong

Beilstein J. Nanotechnol. 2017, 8, 358–371, doi:10.3762/bjnano.8.38

Graphical Abstract
  • frequency shift of the cantilever’s motion correlate to properties of the sample [15]. When closing a feedback loop around these observables with the z-axis nanopositioner, the controller output is routinely used to map the surface topography of the sample. Recently, the additional excitation and detection
  • structure as in Equation 21, however the resulting transfer function shows flipped poles and zeros (compare Figure 7) as well as slightly differing gains, quality factors and resonance frequencies due to the internal feedback nature in Equation 20 [40]. The transfer function in the neighborhood of the
PDF
Album
Full Research Paper
Published 06 Feb 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • on the force plate which could be moved relative to it by a pair of computer-controlled precision manipulating stages (model PD-126M, Physik Instrumente, Karlsruhe, Germany). A force feedback system implemented in LabView was programmed to maintain a constant preload (2 mN) for measurements of
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

Noise in NC-AFM measurements with significant tip–sample interaction

  • Jannis Lübbe,
  • Matthias Temmen,
  • Philipp Rahe and
  • Michael Reichling

Beilstein J. Nanotechnol. 2016, 7, 1885–1904, doi:10.3762/bjnano.7.181

Graphical Abstract
  • increased due to a coupling of the phase-locked loop with the amplitude and the distance control loops. While noise in the amplitude control loop itself is essentially independent of the frequency shift noise without tip–sample interaction, amplitude and topography feedback loop noise are coupled into the
  • ), the parameter βts can be obtained by using either the frequency shift set-point Δfset for the topography feedback or by the average frequency shift measured at the tip–sample distance zp with deactivated topography feedback loop. For the numerical evaluation of signal vs time traces and noise spectra
  • filtered by the narrowband cantilever response function Hc(f). In the frequency control loop (bottom part of Figure 2), the measured cantilever displacement signal is fed into the PLL demodulator yielding the frequency shift signal Δf as well as the excitation signal for the cantilever in the feedback path
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2016

Dynamic of cold-atom tips in anharmonic potentials

  • Tobias Menold,
  • Peter Federsel,
  • Carola Rogulj,
  • Hendrik Hölscher,
  • József Fortágh and
  • Andreas Günther

Beilstein J. Nanotechnol. 2016, 7, 1543–1555, doi:10.3762/bjnano.7.148

Graphical Abstract
  • atoms and could possibly allow for active feedback control of the tip motion. Methods like Q-control [33][34], which have been very successful in conventional force microscopy [35][36], are therefore realizable. The article is structured as follows: We start by describing the theory of tip motion in
PDF
Album
Full Research Paper
Published 31 Oct 2016

Customized MFM probes with high lateral resolution

  • Óscar Iglesias-Freire,
  • Miriam Jaafar,
  • Eider Berganza and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2016, 7, 1068–1074, doi:10.3762/bjnano.7.100

Graphical Abstract
  • MFM data correspond to the shift in the resonance frequency of the cantilever recorded during the retrace scan (withdrawing the sample by 10–20 nm from the topographic set point distance) by using a phase locked-loop (PLL) feedback. The topography and the magnetic properties of the reference Co/Si
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2016

Generalized Hertz model for bimodal nanomechanical mapping

  • Aleksander Labuda,
  • Marta Kocuń,
  • Waiman Meinhold,
  • Deron Walters and
  • Roger Proksch

Beilstein J. Nanotechnol. 2016, 7, 970–982, doi:10.3762/bjnano.7.89

Graphical Abstract
  • as amplitude-modulation (AM) AFM [18][19][20]), is one of the most commonly used parametric techniques, where the cantilever is driven on resonance and the cantilever–sample distance is adjusted by a feedback loop to maintain a constant oscillation amplitude at every image pixel. The time required
  • feedback loops used for the PM and FM modes tracked changes in the cantilever eigenmode appropriately. Large and small amplitude approximations The amplitude of the first mode was modeled in the large limit, while the amplitude of the second mode was modeled in the small limit. The validity of these
PDF
Album
Full Research Paper
Published 05 Jul 2016

Noncontact atomic force microscopy III

  • Mehmet Z. Baykara and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2016, 7, 946–947, doi:10.3762/bjnano.7.86

Graphical Abstract
  • outermost atoms of the probe apex and the atoms on the surface then cause a downshift in oscillation frequency, which is employed as the feedback signal during lateral scanning. In this way, the probe apex remains atomically sharp and it becomes possible to attain atomic-scale resolution on a wide variety
PDF
Editorial
Published 30 Jun 2016

Modelling of ‘sub-atomic’ contrast resulting from back-bonding on Si(111)-7×7

  • Adam Sweetman,
  • Samuel P. Jarvis and
  • Mohammad A. Rashid

Beilstein J. Nanotechnol. 2016, 7, 937–945, doi:10.3762/bjnano.7.85

Graphical Abstract
  • separation. Note a 10 point gaussian filter has been applied to all images to remove high frequency noise. Experimental parameters: A0 = 110 pm, Vgap = 0 V. Experimental tip heights relative to Δf feedback setpoint (top to bottom): +0.186 nm, +0.104 nm, +0.032 nm, 0 nm. Image size 3.6 nm × 3.6 nm. Data
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2016

In situ observation of deformation processes in nanocrystalline face-centered cubic metals

  • Aaron Kobler,
  • Christian Brandl,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2016, 7, 572–580, doi:10.3762/bjnano.7.50

Graphical Abstract
  • inspiring discussions and feedback. We thank Paul Vincze, Karlsruhe Institute of Technology (KIT) for the AFM measurements and Torsten Scherer as well as Robby Prang, Karlsruhe Institute of Technology (KIT) for their help with the FIB. Financial support by the German Science Foundation (DFG) as part of the
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2016

Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

  • Hannes Beyer,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2016, 7, 432–438, doi:10.3762/bjnano.7.38

Graphical Abstract
  • air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions. Keywords: ambient conditions; drift compensation
  • amplitude setpoint of the first harmonic employed for feedback in amplitude-modulated AFM [19]. Another approach is to adjust the topography feedback parameter according to the difference of trace and retrace, which are scanned with different setpoints [20]. Here, we extend the methods reported by Schiener
  • et al. [19] and Fan et al. [21], applying a feedback based on the Q-factor to stabilise the tip–sample distance. In our implementation the ratio of excitation and amplitude of the first harmonic resonance, and thus the Q-factor, is held constant by a slow feedback to compensate for drift of the free
PDF
Album
Full Research Paper
Published 15 Mar 2016

Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer

  • Natsumi Inada,
  • Hitoshi Asakawa,
  • Taiki Kobayashi and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2016, 7, 409–417, doi:10.3762/bjnano.7.36

Graphical Abstract
  • and after the measurement are almost the same (Figure 6a). Figure 6b–f shows FM-AFM images of a mica surface obtained in PBS solution using an AC55 cantilever coated with a PTC layer. After adjusting the imaging parameters such as Δf, A and feedback gains to obtain atomic resolution, long-term FM-AFM
  • commercially available phase-locked loop circuit (OC4, SPECS, Zürich, Switzerland). A commercially available AFM controller (ARC2, Asylum Research, Santa Barbara, CA, USA) was used for the tip–sample distance feedback regulation and acquisition of FM-AFM images. The FM-AFM imaging of a mica surface was
PDF
Album
Supp Info
Full Research Paper
Published 10 Mar 2016

Molecular machines operating on the nanoscale: from classical to quantum

  • Igor Goychuk

Beilstein J. Nanotechnol. 2016, 7, 328–350, doi:10.3762/bjnano.7.31

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2016

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the
  • cantilever holder to mount the piezoelectric cantilever used in this work. The signal access module (SAM) of the AFM provides the relevant inputs and outputs to change the feedback signal from the OBD sensor measurement to charge measurement. Approach and retract curves as well as all AFM imaging data were
  • recorded using two synchronized Zürich Instrument HF2LI lock-in amplifiers for which custom imaging scripts were written. Therefore, it is possible to obtain AFM images relating to either sensor while z-axis feedback is performed on one specific sensor. The samples under investigation are a TGZ1 silicon
PDF
Album
Full Research Paper
Published 24 Feb 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • certain surface area. The tip height is controlled by a feedback loop correlating the tip–sample interaction with the deflection of the cantilever. However, the interaction force contains many different components which can only be partly suppressed (e.g., magnetic forces when inspecting non-magnetic
PDF
Album
Full Research Paper
Published 28 Dec 2015

Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

  • Hironari Isshiki,
  • Jinjie Chen,
  • Kevin Edelmann and
  • Wulf Wulfhekel

Beilstein J. Nanotechnol. 2015, 6, 2412–2416, doi:10.3762/bjnano.6.248

Graphical Abstract
  • temperature was kept at ≈5 K. The dI/dV spectra were taken using a standard lock-in amplifier technique with a 487 Hz modulation frequency and 20 mV modulation voltage with an open feedback loop. The dI/dV maps were recorded with the same lock-in parameters but with a closed feedback loop. A ball–stick model
PDF
Album
Full Research Paper
Published 16 Dec 2015

Negative differential electrical resistance of a rotational organic nanomotor

  • Hatef Sadeghi,
  • Sara Sangtarash,
  • Qusiy Al-Galiby,
  • Rachel Sparks,
  • Steven Bailey and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 2332–2337, doi:10.3762/bjnano.6.240

Graphical Abstract
  • in Figure 1 whose conformation can be manipulated using an external electric field and whose conformational changes feedback to produce a nonlinear current–voltage relation. This novel NEM consists of a pendant rotor attached by a single carbon bond to an aromatic backbone. The rotor is designed to
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2015

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • the tip [22][36] inducing in this way the formation of a rippled structure along the circumference of a scanned circle (Figure 2). While scanning a PMMA surface with a minimum feedback, the authors have been able to record instantaneous variations in the cantilever vertical displacement. They have
PDF
Album
Review
Published 02 Dec 2015
Other Beilstein-Institut Open Science Activities