Search results

Search for "graphene oxide" in Full Text gives 150 result(s) in Beilstein Journal of Nanotechnology.

Advances in nanocarbon composite materials

  • Sharali Malik,
  • Arkady V. Krasheninnikov and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2018, 9, 20–21, doi:10.3762/bjnano.9.3

Graphical Abstract
  • , Moldova, Korea, China, Japan, Australia and New Zealand. This Thematic Series highlights virtually all subfields of advanced nanocarbon materials research, from the longer established fields of carbon nanofibers, graphene oxide (GO) and multiwalled carbon nanotubes (MWCNTs) in composite materials, to the
PDF
Editorial
Published 03 Jan 2018

L-Lysine-grafted graphene oxide as an effective adsorbent for the removal of methylene blue and metal ions

  • Yan Yan,
  • Jie Li,
  • Fangbei Kong,
  • Kuankuan Jia,
  • Shiyu He and
  • Baorong Wang

Beilstein J. Nanotechnol. 2017, 8, 2680–2688, doi:10.3762/bjnano.8.268

Graphical Abstract
  • of education key laboratory with modern metallurgical technology, North China University of Science and Technology, Tangshan 63000, China 10.3762/bjnano.8.268 Abstract In this paper, novel L-lysine-modified graphene oxide (Lys-GO) was synthesized through amidation. The morphological and structural
  • , a MoSx/3D-graphene hybrid material as an electrode material enhanced the efficiency of hydrogen-producing in a fuel cell [8]. Mo et al. reported reduced graphene oxide covalently functionalized with L-lysine [9], which could be used for the electrochemical recognition of tryptophan (Trp) enantiomers
  • . Reduced graphene oxide as an effective adsorbent can be used for the removal of malachite green dye and metal ions [10][11]. A high-performance hydrophilic polyvinylidene fluoride/graphene oxide (PVDF/GO)–lysine composite membrane can be used for sea water desalination and purification [12]. However, the
PDF
Album
Full Research Paper
Published 13 Dec 2017

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • metals are readily immobilized on graphene oxide by means of cation exchange with carboxylic acid groups, followed by thermal reduction to produce metal nanoparticles supported on functionalized graphene. Such palladium nanoparticles supported on graphene were used as highly active catalysts for the
  • functionalities. Results and Discussion Transition-metal amidinates [M(AMD)n; M = Fe(II), Co(II), Pr(III)] as well as Eu(dpm)3 were dissolved or suspended under nitrogen atmosphere in the dried and deoxygenated ionic liquid together with the selected type of thermally reduced graphene oxide (TRGO). Complete
  • water the IL was dried under ultra-high vacuum (10−7 mbar) at 60 °C for several days. Thermally reduced graphene oxide (TRGO) was prepared in a two-step oxidation/thermal reduction process using natural graphite (type KFL 99.5 from AMG Mining AG, former Kropfmühl AG, Passau, Germany) as raw material
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Freestanding graphene/MnO2 cathodes for Li-ion batteries

  • Şeyma Özcan,
  • Aslıhan Güler,
  • Tugrul Cetinkaya,
  • Mehmet O. Guler and
  • Hatem Akbulut

Beilstein J. Nanotechnol. 2017, 8, 1932–1938, doi:10.3762/bjnano.8.193

Graphical Abstract
  • microwave hydrothermal synthesis, and graphene oxide (GO) nanosheets were prepared by oxidation of graphite using a modified Hummers’ method. Freestanding graphene/MnO2 cathodes were manufactured through a vacuum filtration process. The structure of the graphene/MnO2 nanocomposites was characterized using X
  • ), (130), (210), (400), (211), (402), (020), (421) planes of γ-MnO2 [23]. Figure 3b shows XRD patterns of graphene oxide, graphene/α-MnO2, graphene/β-MnO2 and graphene/γ-MnO2 composite structures. The graphene peak observed at a 2θ value of 25.8o indicates the (002) plane of carbon. However, there are
  • still some remaining graphene oxide phases observed at 2θ values of 10.9o in graphene/α-MnO2 and graphene/β-MnO2, while almost all graphene oxide is transformed to graphene in the graphene/γ-MnO2 structure [24][25][26]. Further phase characterization of graphene/α-MnO2, graphene/β-MnO2 and graphene/γ
PDF
Album
Full Research Paper
Published 14 Sep 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • during carbonization. Thus, the understanding of the oxidation mechanism is an essential part of the production of CNF. The oxidation process of polyacrylonitrile was studied and nanofiber webs containing graphene oxide (GO) are obtained to improve the electrochemical properties of CNF. Structural and
  • interior pores filled with electrolyte. Keywords: carbon nanofiber; graphene oxide; oxidized polyacrylonitrile (PAN); Introduction Carbon nanofibers are of great interest because of their chemical similarity to fullerenes and carbon nanotubes. Carbon nanofibers (CNF) have promising electrochemical and
  • ]. Graphene oxide has been synthesized from graphite with strong acids and oxidants [24][25]. The oxidation level can be adjusted by modifying reaction conditions and systems, and the type of precursor. Moreover, oxygen functional groups increase wettability and capacitance, but not all of the surface oxygen
PDF
Album
Full Research Paper
Published 07 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • photocatalytic degradation of adsorbed pollutants [48]. Several chemical and physical methods have been developed for the synthesis of graphene and graphene-based nanocomposites. One of the well-known methods for graphene oxide synthesis is Hummers’ method, which includes chemical oxidation of graphite flakes to
  • form graphene oxide (GO) [49]. GO contains carboxyl, epoxides and hydroxyl groups covalently attached to the graphene sheet. This leads to the loss of electrical conductivity and limits the application of GO in many areas. However, the presence of polar functional groups in GO makes it hydrophilic in
  • nature and it is responsible for the easy dispersal in many solvents such as water, which is helpful for the formation of various composites [50]. The reduction of GO in various reducing conditions forms reduced graphene oxide (RGO) in which electrical conductivity is partly revived. This RGO is also
PDF
Album
Review
Published 03 Aug 2017

A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite

  • Peter Sobolewski,
  • Agata Goszczyńska,
  • Małgorzata Aleksandrzak,
  • Karolina Urbaś,
  • Joanna Derkowska,
  • Agnieszka Bartoszewska,
  • Jacek Podolski,
  • Ewa Mijowska and
  • Mirosława El Fray

Beilstein J. Nanotechnol. 2017, 8, 1508–1514, doi:10.3762/bjnano.8.151

Graphical Abstract
  • , Szczecin, Poland 10.3762/bjnano.8.151 Abstract We present an ink platform for a printable polymer–graphene nanocomposite that is intended for the development of modular biosensors. The ink consists of catechol-modified chitosan and reduced graphene oxide decorated with platinum nanoparticles (rGO–Pt). We
  • . First, we prepare dispersions of reduced graphene oxide (rGO) decorated with platinum nanoparticles (rGO–Pt) in ethylene glycol (EG). As the polymer matrix, we utilize chitosan (CHI), a polycationic biopolymer that provides excellent film-forming properties and easy-to-functionalize amine groups [8
  • . While graphene oxide can be readily dispersed in aqueous solutions, graphene and rGO require appropriate organic solvents [11]. N-methyl-2-pyrrolidone (NMP) is perhaps the ideal solvent for the exfoliation of graphite and graphene. However, the aggressive nature of this solvent led us to choose ethylene
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2017

Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime

  • Shende Rashmi Chandrabhan,
  • Velayudhanpillai Jayan,
  • Somendra Singh Parihar and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2017, 8, 1476–1483, doi:10.3762/bjnano.8.147

Graphical Abstract
  • Coating Material Laboratory, NTPC Energy Technology Research Alliance (NETRA), NTPC Ltd, E3, Ecotech II, Greater Noida 201306, Uttar Pradesh, India 10.3762/bjnano.8.147 Abstract The present paper describes a facile synthesis method for nitrogen-doped reduced graphene oxide (N-rGO) and the application of
  • nanolubricant in an induced draft (ID) fan results in the remarkable decrease in the power consumption. Keywords: friction; lubrication; nanolubricant; nitrogen-doped reduced graphene oxide; tribology; wear; Introduction Advances in machine technology necessitate the reduction in energy loss by improving the
  • carbon nanotubes and graphene oxide nanosheets as additives for water-based lubricants and found that graphene oxide nanosheets improved the tribological properties more than the carbon nanotubes [23]. Zhang et al. studied the tribological properties of an oil lubricant with oleic acid-modified graphene
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2017

Fully scalable one-pot method for the production of phosphonic graphene derivatives

  • Kamila Żelechowska,
  • Marta Prześniak-Welenc,
  • Marcin Łapiński,
  • Izabela Kondratowicz and
  • Tadeusz Miruszewski

Beilstein J. Nanotechnol. 2017, 8, 1094–1103, doi:10.3762/bjnano.8.111

Graphical Abstract
  • Kamila Zelechowska Marta Przesniak-Welenc Marcin Lapinski Izabela Kondratowicz Tadeusz Miruszewski Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza St. 11/12; 80-233 Gdansk, Poland 10.3762/bjnano.8.111 Abstract Graphene oxide was functionalized with
  • simultaneous reduction to produce phosphonated reduced graphene oxide in a novel, fully scalable, one-pot method. The phosphonic derivative of graphene was obtained through the reaction of graphene oxide with phosphorus trichloride in water. The newly synthesized reduced graphene oxide derivative was fully
  • characterized by using spectroscopic methods along with thermal analysis. The morphology of the samples was examined by electron microscopy. The electrical studies revealed that the functionalized graphene derivative behaves in a way similar to chemically or thermally reduced graphene oxide, with an activation
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2017

Study of the correlation between sensing performance and surface morphology of inkjet-printed aqueous graphene-based chemiresistors for NO2 detection

  • F. Villani,
  • C. Schiattarella,
  • T. Polichetti,
  • R. Di Capua,
  • F. Loffredo,
  • B. Alfano,
  • M. L. Miglietta,
  • E. Massera,
  • L. Verdoliva and
  • G. Di Francia

Beilstein J. Nanotechnol. 2017, 8, 1023–1031, doi:10.3762/bjnano.8.103

Graphical Abstract
  • (graphene oxide) dispersion [14], are reported in literature. The former utilizes a highly energy-consuming method [3][13], the latter generally employs highly dangerous chemicals [4][14]. Therefore both approaches are not suitable for sustainable processes. In this study, the electrical responses of the
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • number of publications dedicated to graphene-based sensors [2]. The gas sensor devices presented in literature are mostly based on pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO). Many approaches for the fabrication of such materials, including CVD, mechanical, chemical and
PDF
Album
Full Research Paper
Published 08 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO), a graphene-like material, can be easily prepared by reduction of graphene oxide (GO
  • perspectives to improve the properties of the hybrid materials in view of applications are outlined. Keywords: graphene; hybrid; nanoparticle; reduced graphene oxide; transition metal oxide; Review Introduction Graphene consists of a single layer of carbon in a two-dimensional (2D) lattice. It is a densely
  • ] (Figure 6). N-doping of reduced mildly oxidised graphene oxide (rmGO) affords stronger coupling than rmGO and Co3O4 (Co3O4/N-rmGO than in Co3O4/rmGO) due to favourable nucleation and anchor sites for Co3O4 nanocrystals as N-groups help on rGO. In the ORR, the electronic effect of N-doping of graphene also
PDF
Album
Review
Published 24 Mar 2017

Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application

  • Giacomo Biagiotti,
  • Vittoria Langè,
  • Cristina Ligi,
  • Stefano Caporali,
  • Maurizio Muniz-Miranda,
  • Anna Flis,
  • K. Michał Pietrusiewicz,
  • Giacomo Ghini,
  • Alberto Brandi and
  • Stefano Cicchi

Beilstein J. Nanotechnol. 2017, 8, 485–493, doi:10.3762/bjnano.8.52

Graphical Abstract
  • palladium nanoparticles supported on phosphine decorated graphene oxide [17]. The interest in the introduction of a phosphine oxide group in CNMs is due to its ability to promote a wide varieties of chemical transformation [18]. Phosphines have found large application in organocatalytic processes [19][20
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • strain gauge. These compounds have received significant interest not only for their high sensibility and tunability, but also for the potential for gauging strain that they offer in several biological systems. A highly stretchable and sensitive strain sensor based on reduced graphene oxide or graphene on
PDF
Album
Full Research Paper
Published 03 Jan 2017

Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

  • Nadezhda M. Zholobak,
  • Anton L. Popov,
  • Alexander B. Shcherbakov,
  • Nelly R. Popova,
  • Mykhailo M. Guzyk,
  • Valeriy P. Antonovich,
  • Alla V. Yegorova,
  • Yuliya V. Scrypynets,
  • Inna I. Leonenko,
  • Alexander Ye. Baranchikov and
  • Vladimir K. Ivanov

Beilstein J. Nanotechnol. 2016, 7, 1905–1917, doi:10.3762/bjnano.7.182

Graphical Abstract
  • nitric acid oxidation of carbon soot reduced the viability of HepG2 cells by 20%, at concentrations higher than 100 μg/mL [49]. The graphene quantum dots prepared with graphene oxide as starting material were markedly toxic for MCF-7 and MGC-803 (human gastric cancer) cells at concentrations higher than
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016

Evolution of the graphite surface in phosphoric acid: an AFM and Raman study

  • Rossella Yivlialin,
  • Luigi Brambilla,
  • Gianlorenzo Bussetti,
  • Matteo Tommasini,
  • Andrea Li Bassi,
  • Carlo Spartaco Casari,
  • Matteo Passoni,
  • Franco Ciccacci,
  • Lamberto Duò and
  • Chiara Castiglioni

Beilstein J. Nanotechnol. 2016, 7, 1878–1884, doi:10.3762/bjnano.7.180

Graphical Abstract
  • is grown there with respect to the darker A-regions. Considering that (1) the EC process induces an oxidation of the graphite surface (anodic currents), (2) the refractive index of graphene oxide is about 1.85 [14][15] and that (3) the light used to acquire the image reported in Figure 2 is in the
PDF
Album
Full Research Paper
Published 30 Nov 2016

In situ formation of reduced graphene oxide structures in ceria by combined sol–gel and solvothermal processing

  • Jingxia Yang,
  • Johannes Ofner,
  • Bernhard Lendl and
  • Ulrich Schubert

Beilstein J. Nanotechnol. 2016, 7, 1815–1821, doi:10.3762/bjnano.7.174

Graphical Abstract
  • Shanghai, P. R. China Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Wien, Austria 10.3762/bjnano.7.174 Abstract Raman and IR investigations indicated the presence of reduced graphene oxide (rGO)-like residues on ceria nanoparticles after
  • solvothermal treatment in ethanol. The appearance of such structures is closely related to cerium tert-butoxide as precursor and ethanol as solvothermal solvent. The rGO-like residues improve the catalytic CO oxidation activity. This was also confirmed by introduction of “external” graphene oxide during sol
  • –gel processing, by which the rGO structures and the catalytic activity were enhanced. Keywords: ceria; CO oxidation; graphene oxide; sol–gel processing; Introduction Ceria (CeO2) has been widely studied as catalyst or catalyst support for redox reactions owing to its high oxygen storage and release
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2016

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • electronic properties to a change in concentrations of surface functional groups and adsorbates. However, sensors based on reduced graphene oxide are only well investigated in terms of determination of the concentration limit of heavy metals and improving the response time [18][19][20][21][22][23][24][25][26
  • ]. In particular, it was previously reported that functionalized graphene oxide sheets on Au templates can effectively detect lead and mercury ions with improved electrochemical performance [18]. The possibility of using field effect transistors (FET) based on thermally reduced graphene oxide decorated
  • to literature, graphene oxide is more toxic than pristine graphene [27], has a lower carrier mobility [28], higher thermal noise and a natural tendency to agglomerate [29]. In addition, because of the high material inhomogeneity and small domain sizes, it is complicated to fabricate sensing devices
PDF
Album
Full Research Paper
Published 22 Nov 2016

Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

  • Suneel Kumar,
  • Rahul Sharma,
  • Vipul Sharma,
  • Gurunarayanan Harith,
  • Vaidyanathan Sivakumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2016, 7, 1684–1697, doi:10.3762/bjnano.7.161

Graphical Abstract
  • the photocatalysts. In this work, we have investigated the role of reduced graphene oxide (RGO) support and the irradiation source on mixed metal chalcogenide semiconductor (CdS–ZnO) nanostructures. The photocatalyst material was synthesized using a facile hydrothermal method and thoroughly
  • the conduction band (CB) of CdS to that of ZnO [22][27]. The CdS–ZnO semiconductor nanostructures can be further supported on graphene/reduced graphene oxide (RGO) materials to improve their photocatalytic properties. Ideally, graphene is a single layer carbon sheet, which consists of a two
  • purchased from Sigma-Aldrich. All chemicals were used as received without further purification. Deionized water (18.2 MΩ·cm) used in synthesis was obtained from a double-stage water purifier (ELGA PURELAB Option-R7). Synthesis of graphene oxide Graphene oxide (GO) was synthesized from natural graphite
PDF
Album
Full Research Paper
Published 11 Nov 2016

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • the nanohole array surface. Furthermore, a reduced graphene oxide (rGO) sensor surface was layered over the nanohole array. Reduced graphene oxide is a 2D nanomaterial consisting of sp2-hybridized carbon atoms and is an attractive receptor surface for SPR as it omits any bulk phase and therefore
  • , distance between the centres of neighbouring holes) both significantly affect the plasmonic properties and therefore the sensitivity of nanohole arrays [34]. For an analytical application the gold layer needs to be modified with a receptor layer. Reduced graphene oxide (rGO) is a very interesting receptor
  • the fabrication of the plasmon–graphene hybrids, the nanostructured substrates were functionalized with rGO via spin coating. The resulting two-dimensional graphene nanomaterial was characterized using Raman microscopy (Figure 5). Reduced graphene oxide is identified by the three distinct Raman bands
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Development of adsorptive membranes by confinement of activated biochar into electrospun nanofibers

  • Mehrdad Taheran,
  • Mitra Naghdi,
  • Satinder K. Brar,
  • Emile Knystautas,
  • Mausam Verma,
  • Rao. Y. Surampalli and
  • Jose. R. Valero

Beilstein J. Nanotechnol. 2016, 7, 1556–1563, doi:10.3762/bjnano.7.149

Graphical Abstract
  • our previous research, we observed that the adsorption capacity of activated pinewood biochar towards CTC was up to 434 mg/g, which is comparable with graphene oxide and carbon nanotubes [22]. However, in this research, due to the low loading of activated biochar onto membrane, the adsorption capacity
PDF
Album
Full Research Paper
Published 01 Nov 2016

A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

  • Vardan Galstyan,
  • Elisabetta Comini,
  • Iskandar Kholmanov,
  • Andrea Ponzoni,
  • Veronica Sberveglieri,
  • Nicola Poli,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2016, 7, 1421–1427, doi:10.3762/bjnano.7.133

Graphical Abstract
  • , Via Valotti 9, 25133 Brescia, Italy Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA 10.3762/bjnano.7.133 Abstract A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The
  • monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds. Keywords: chemical sensors; reduced graphene oxide (RGO); volatile organic compounds; zinc oxide (ZnO); Introduction Hazard analysis of critical control point (HACCP
  • materials make them a suitable candidate for various applications [20][21]. Recently we have shown that the functionalization of ZnO with reduced graphene oxide (RGO) sheets improved its sensing performance for NO2 and H2 [22]. Abideen et al. also improved the response of ZnO towards H2 preparing ZnO
PDF
Album
Full Research Paper
Published 10 Oct 2016

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • been carried out on nanostructured carbon hosts for sulfur storage including carbon fibers [13][14], carbon nanotubes [15][16], graphene/graphene oxide [17][18][19] as well as micro-/mesoporous carbons [20][21][22]. Among the porous carbons, especially hollow carbon spheres (HCS) have attracted
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • can be attributed to the higher capability of graphene to rebound advancing cracks [11][12]. The Raman and XPS spectra of graphite, graphene oxide (GO), and thermally reduced graphene oxide (RGO) are shown in Figure 1a,b. The graphene structure can be studied by using transmission electron microscopy
  • was achieved for amino-functionalized graphene oxide (APTS-GO) [90], while the largest improvement was recorded for surfactant-modified graphene nanoplatelets [60]. SWNTs in superacids: Strong acids such as fuming sulfuric acid and clorosulfonic acid can dissolve and disperse MLG and CNTs in large
  • of nanocomposites. Naebe et al. produced covalently functionalized MLG–epoxy nanocomposites and reported 18% and 23% increase in flexural strength and modulus, respectively [147]. Qi et al. produced graphene oxide–epoxy nanocomposites and reported increase up to 53% in flexural strength [148]. The
PDF
Album
Full Research Paper
Published 12 Aug 2016

Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode

  • Refat Abdel-Hamid and
  • Emad F. Newair

Beilstein J. Nanotechnol. 2016, 7, 1104–1112, doi:10.3762/bjnano.7.103

Graphical Abstract
  • optimal test conditions of GA were carefully investigated on a sensor based on chitosan/fFe2O3/reduced graphene oxide/GCE. Under optimal conditions, the detection limit was estimated to be 1.5 × 10−7 M [4]. An electrochemical sensor coupled with an effective flow-injection amperometric system was
  • with thionine and nickel hexacyanoferrate [13]. A polyethyleneimine-functionalized graphene oxide modified glassy carbon electrode sensor was developed for sensitive detection of gallic acid [14]. A polyepinephrine modified glassy carbon electrode electrochemical sensor was developed for adsorptive
PDF
Album
Full Research Paper
Published 29 Jul 2016
Other Beilstein-Institut Open Science Activities