Search results

Search for "inhibition" in Full Text gives 169 result(s) in Beilstein Journal of Nanotechnology.

The inhibition effect of water on the purification of natural gas with nanoporous graphene membranes

  • Krzysztof Nieszporek,
  • Tomasz Pańczyk and
  • Jolanta Nieszporek

Beilstein J. Nanotechnol. 2018, 9, 1906–1916, doi:10.3762/bjnano.9.182

Graphical Abstract
PDF
Album
Full Research Paper
Published 02 Jul 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • released 0.634 μg (8.7%) Zn2+. The results also demonstrate the inhibition behavior of the NDM layer. In the time ranges of 3.5–7.5 h and 7.5–12 h, the sample with NDM releases Zn2+ abruptly under irradiation (0.592 μg and 0.754 μg) as shown in Figure 7b, compared with Zn-Ag-TNTs under illumination (0.196
  • infiltrate the nanotubes to increase the amount of Zn2+ released. The hydrophobic layer (NDM) can be applied for the inhibition of drug release, and thereby to extend the course of drug release. Meanwhile, visible light can be used to control drug release via degradation of the polymer coating on the
PDF
Album
Full Research Paper
Published 14 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • [125]. The enhancement in the photocatalytic activity is mainly due to two reasons: (i) inhibition in recombination of electron–hole pairs by the effective transport of photoinduced electrons from the CB of TiO2 to RGO [126][127], and (ii) higher light absorption due to the development in surface
  • only retards the recombination of photogenerated electrons and holes, but also extends the absorption edge towards the visible region. Moreover, an increase in the Ni content hinders aggregation of TiO2 because an appreciable amount of NiO restricts the growth of TiO2 particles. The inhibition in
PDF
Album
Review
Published 16 May 2018

Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

  • Nor Fazila Khairudin,
  • Mohd Farid Fahmi Sukri,
  • Mehrnoush Khavarian and
  • Abdul Rahman Mohamed

Beilstein J. Nanotechnol. 2018, 9, 1162–1183, doi:10.3762/bjnano.9.108

Graphical Abstract
  • forming carbon. Thus, the high energy barrier of CO could prevent the formation of carbon. Djaidja et al. [78] highlighted that the inhibition of carbon deposition over a Ni–M/MgO catalyst is a result of increasing the adsorption of CO2 on the support surface, enhancing the rate of surface reaction and
  • catalysts prepared by various preparation methods have been observed by numerous researchers [91][92][93][94]. The catalyst preparation technique is an alternative approach to achieve carbon inhibition by controlling particle size and metal loading during catalyst preparation. The pivotal factors
PDF
Album
Review
Published 13 Apr 2018

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

  • Abdulrahman Altin,
  • Maciej Krzywiecki,
  • Adnan Sarfraz,
  • Cigdem Toparli,
  • Claudius Laska,
  • Philipp Kerger,
  • Aleksandar Zeradjanin,
  • Karl J. J. Mayrhofer,
  • Michael Rohwerder and
  • Andreas Erbe

Beilstein J. Nanotechnol. 2018, 9, 936–944, doi:10.3762/bjnano.9.86

Graphical Abstract
  • . This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide β-cyclodextrin (β-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of β-CD is present on the surface of the oxide covered metal
  • interface, closely resembling the energy level alignment in an n–p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows
  • inhibitors [8][12][13]. Metallic zinc is industrially used for cathodic protection of steel [15]. In this work, the inhibition of zinc corrosion by β-CD was investigated electrochemically. Inhibition efficiencies were determined by electrochemical impedance spectroscopy (EIS). After exposure to chloride
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • albicans (C. albicans)) activity under visible-light irradiation and in the dark using disk diffusion, suspension, colony growth (“poisoned food”) and sporulation methods. It was found that silver-modified titania, besides remarkably high antibacterial activity (inhibition of bacterial proliferation
  • and sporulation by gold-modified titania. Although, the growth of fungi was hardly inhibited through disc diffusion (inhibition zones around discs), it indicates that gold does not penetrate into the media, and thus, a good stability of plasmonic photocatalysts has been confirmed. In summary, it was
  • further clarify (1) the mechanism of antimicrobial action of plasmonic photocatalysts, (2) key factors of the high activity against various microorganisms, (3) the correlation between the inactivation and complete decomposition of bacteria, (4) the inhibition of filamentous fungal growth and sporulation
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
PDF
Review
Published 27 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • by adding BQ, which is capable of trapping O2• [57]. It was observed that the addition of BQ to both samples (TiO2_O(1:3) and TiO2_O(1:3)) caused inhibition of phenol degradation, as presented in Table 4. The degradation rate was largely suppressed to 22 and 11% for the TiO2_T(1:3) and TiO2_O(1:3
  • ) photocatalysts, respectively. It is deduced that the oxidation inhibition of phenol is due to the suppression of the superoxide anion formation by the BQ addition. Addition of AO (holes scavenger) resulted in a slight inhibition of the photodegradation process under visible-light irradiation for both samples
PDF
Album
Full Research Paper
Published 14 Feb 2018

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

  • Nagamalai Vasimalai,
  • Vânia Vilas-Boas,
  • Juan Gallo,
  • María de Fátima Cerqueira,
  • Mario Menéndez-Miranda,
  • José Manuel Costa-Fernández,
  • Lorena Diéguez,
  • Begoña Espiña and
  • María Teresa Fernández-Argüelles

Beilstein J. Nanotechnol. 2018, 9, 530–544, doi:10.3762/bjnano.9.51

Graphical Abstract
  • show any significant toxicity in either cancerous or non-cancerous cells, implying that the tumour cell growth inhibition properties observed in the spice-derived C-dots can be attributed to the starting material employed for their fabrication. These results evidence that functional groups in the
  • significant effect on cell viability neither in LN-229 nor in HK-2 cells (Figure 8) suggests that the inhibition effect on the cell growth of LN-229 cells can be attributed to the nature of the spice-based C-dots, indeed depending on the starting material employed for the C-dots synthesis. Considering the
  • reduction in cell viability was observed for LN-229 cells after 24 h of exposure to increasing concentrations of each C-dot type. In fact, results obtained showed that 2 mg/mL of cinnamon, red chilli, turmeric and black pepper C-dots yielded cancer cell growth inhibition efficiencies of 35, 50, 50 and 75
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2018

Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2

  • Patrycja Parnicka,
  • Paweł Mazierski,
  • Tomasz Grzyb,
  • Wojciech Lisowski,
  • Ewa Kowalska,
  • Bunsho Ohtani,
  • Adriana Zaleska-Medynska and
  • Joanna Nadolna

Beilstein J. Nanotechnol. 2018, 9, 447–459, doi:10.3762/bjnano.9.43

Graphical Abstract
  • rate reaching 1.59 μmol·dm−1·min−1. In the case of Nd-modified samples, the photocatalysts prepared via the HT method also showed higher activity (the degradation rate was equal to 1.22 μmol·dm−1·min−1). It should be pointed out that samples prepared by the HT process revealed the highest inhibition of
PDF
Album
Full Research Paper
Published 06 Feb 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • whole duration of testing (14 days), the maximum concentration of Ag+ ions was 90 ppb (CVD BN/Ag HNMs) and 110 ppb (UV BN/Ag HNMs). Antibacterial activity The antibacterial activity of BN/Ag HNMs obtained via CVD was first studied using the inhibition zone method. The diameter of all discs with tested
  • samples was 11 mm. The pristine BN sample did not show any noticeable effect on the inhibition of E. coli colony growth (Figure 9a). In contrast, Ag ions leaching out of the samples demonstrated a significant inhibition effect on the growth of E. coli K-261 bacteria around BN/Ag HNMs (Figure 9b and 9c
  • ). The width of inhibition zone increased from 1.5 mm (BN) to 6 mm (UV BN/Ag HNMs) and 7–8 mm (CVD BN/Ag HNMs). Note that in both Ag-containing samples additional zones, 1–1.5 mm wide, with a reduced cell concentration were observed just behind the inhibition zones (shown by arrows). This effect can be
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • great advantage of avoiding product inhibition and cross-reaction [42]. Furthermore, cascaded reactions can be divided into different areas where each region can be set with their own optimal reaction conditions such as temperature, pH and concentration. The various photocatalytic nanomaterials [62] can
PDF
Album
Review
Published 04 Jan 2018

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • exhibits the highest activity at pH values varying from 5 to 8 (k values are varying from 0.017 to 0.031 min−1). At pH 3, the photodegradation kinetic is reduced (k = 0.011 min-1) but the highest inhibition was observed in basic media (k = 0.009 and 0.006 min−1 at pH 9 and 11, respectively). The point of
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • using a surface forces apparatus (SFA). They reported an inhibition of slip length with the increase of root mean squared (RMS) roughness, which suggests that a smoother surface results in a larger slip length. The Craig group [18] utilized atomic force microscopy (AFM) to measure the slip length on
PDF
Album
Full Research Paper
Published 27 Nov 2017

Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

  • Dimitri Vanhecke,
  • Dagmar A. Kuhn,
  • Dorleta Jimenez de Aberasturi,
  • Sandor Balog,
  • Ana Milosevic,
  • Dominic Urban,
  • Diana Peckys,
  • Niels de Jonge,
  • Wolfgang J. Parak,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2017, 8, 2396–2409, doi:10.3762/bjnano.8.239

Graphical Abstract
  • inhibitor MDC. Inhibition of this pathway was also reported for the Fe-binding protein transferrin, whereas the uptake of non-biological (nano)particles such as polystyrene beads was not blocked [35]. However, the pathway was not exclusively clathrin-mediated because evidence of uptake is observed
  • intracellularly after MDC treatment, suggesting that at least one additional uptake mechanism is active. Co-exposure of FeOxNPs and AuNPs in the presence of the clathrin-mediated endocytosis inhibitor MDC mediated a recovery from the uptake inhibition, again suggesting that more than one pathway is involved
  • . Therefore, the co-exposure of NPs to a culture of macrophages with an inhibited clathrin-mediated endocytosis pathway may restore the uptake until it is indiscernible from a not-inhibited, healthy culture. Without inhibition, the particles are internalized faster in co-exposure experiments than in each
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2017

Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach

  • Alicja Mikolajczyk,
  • Natalia Sizochenko,
  • Ewa Mulkiewicz,
  • Anna Malankowska,
  • Michal Nischk,
  • Przemyslaw Jurczak,
  • Seishiro Hirano,
  • Grzegorz Nowaczyk,
  • Adriana Zaleska-Medynska,
  • Jerzy Leszczynski,
  • Agnieszka Gajewicz and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 2171–2180, doi:10.3762/bjnano.8.216

Graphical Abstract
  • Toxicity evaluation Three types of TiO2-based NPs were synthetized: (1) monometallic (Au, Pd) clusters, (2) core–shell particles and (3) alloy bimetallic clusters (Au/Pd). The cytotoxicity and antimicrobial activity of TiO2 modified with palladium and/or gold NPs is presented in Table 1. Inhibition of
  • bacterial growth was not observed up to the highest tested concentration of 500 µg/L. In the agar diffusion method, a slight inhibition of bacterial growth was noted for nanomaterials: 0.25Au, 1.25Au, 0.1Pd_0.5Au, 0.1Pd_1.25Au, 0.5Pd_0.5Au. At the same time, mammalian cells were more sensitive to Au/Pd-TiO2
  • , Pd-TiO2 and bimetallic Au/Pd-TiO2 was greater than the one observed for pure TiO2. At the same time, when MIC was determined, inhibition of bacterial growth was not observed for the investigated nanomaterials, up to the highest tested concentration. When comparing the metal content, the nanoparticles
PDF
Album
Full Research Paper
Published 17 Oct 2017

Bi-layer sandwich film for antibacterial catheters

  • Gerhard Franz,
  • Florian Schamberger,
  • Hamideh Heidari Zare,
  • Sara Felicitas Bröskamp and
  • Dieter Jocham

Beilstein J. Nanotechnol. 2017, 8, 1982–2001, doi:10.3762/bjnano.8.199

Graphical Abstract
  • traces are inductively coupled plasma optical emission spectroscopy (ICP-OES), cyclic voltammetry, and atomic absorption spectroscopy (AAS). The former two methods have been extensively used and are described in [19][40][41]. The biological methods are the determination of the zone of inhibition around a
PDF
Album
Full Research Paper
Published 22 Sep 2017

Optical techniques for cervical neoplasia detection

  • Tatiana Novikova

Beilstein J. Nanotechnol. 2017, 8, 1844–1862, doi:10.3762/bjnano.8.186

Graphical Abstract
  • ). It is known that progression of CIN from mild dysplasia to invasive cancer is accompanied by the increase in level of epidermal growth factor receptor (EGFR). The overexpression of EGFR has been correlated to uncontrolled cell growth and inhibition of cell apoptosis. Hence, EGFR can be used as a
PDF
Album
Review
Published 06 Sep 2017

A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity

  • Svitlana Prylutska,
  • Svitlana Politenkova,
  • Kateryna Afanasieva,
  • Volodymyr Korolovych,
  • Kateryna Bogutska,
  • Andriy Sivolob,
  • Larysa Skivka,
  • Maxim Evstigneev,
  • Viktor Kostjukov,
  • Yuriy Prylutskyy and
  • Uwe Ritter

Beilstein J. Nanotechnol. 2017, 8, 1494–1501, doi:10.3762/bjnano.8.149

Graphical Abstract
  • action and binds covalently to DNA. In tumor cells Cis induces the selective inhibition of DNA synthesis and replication [2]. However, the action of Cis is accompanied by side effects that limit the use of Cis in anticancer chemotherapy. Сіs-induced nephro-, hepato- and cardiotoxicity, as well as
PDF
Album
Full Research Paper
Published 20 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • effective on growth inhibition of breast and prostate cancer cells when compared to free docetaxel [23]. Core–shell nanoparticles are also used as non-viral vectors for the treatment of glioma. Zamora et al. prepared photochemical internalization mediated polyamine core–shell nanoparticles for tumor
  • sustained release of the model drug epidoxorubicin as carriers of pEGFP DNA complexes. The results demonstrated that co-delivery of drug and gene could be performed and strong inhibition effects on glioblastoma can be achieved with their system [25]. Additionally, magnetic core–shell nanoparticles have been
  • an intracranial U87 glioma model. They demonstrated that active targeted and cationic core–shell nanoparticles could be effective in inhibition of tumor proliferation with higher accumulation in tumor area when they are administered intravenously [67]. Different studies also showed that nanoparticles
PDF
Album
Full Research Paper
Published 12 Jul 2017

Micro- and nano-surface structures based on vapor-deposited polymers

  • Hsien-Yeh Chen

Beilstein J. Nanotechnol. 2017, 8, 1366–1374, doi:10.3762/bjnano.8.138

Graphical Abstract
  • proliferation (FGF-2) and osteogenic differentiation (BMP-2) for adipose-derived stem cells [76]. Selective deposition The aforementioned methods rely on physical means to obtain spatially controlled surface modifications and patterned structures. A simpler approach is the selective inhibition of the vapor
  • deposition/polymerization process on substrates, i.e., the polymer coatings are either deposited or not on substrates because of the chemistry below the substrate surface. The mechanism of the polymer deposition selectivity is not conclusive. The inhibition of polymer deposition is believed to occur because
PDF
Album
Review
Published 04 Jul 2017

Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation

  • Kati Erdmann,
  • Jessica Ringel,
  • Silke Hampel,
  • Manfred P. Wirth and
  • Susanne Fuessel

Beilstein J. Nanotechnol. 2017, 8, 1307–1317, doi:10.3762/bjnano.8.132

Graphical Abstract
  • viability of PCa cells to 94% and 68%, respectively, whereas a combined treatment with CNFs led to less than 30% remaining viable cells. Up to 17- and 7-fold higher DTX and MMC concentrations were needed in order to evoke a similar inhibition of viability as mediated by the combinatory treatments. In
  • contrast, the dose of platinum-based chemotherapeutics could only be reduced by up to 3-fold by combination with carbon nanomaterials. Furthermore, combinatory treatments with CNFs led mostly to an additive inhibition of short- and long-term proliferation compared to the individual treatments. Also, higher
  • chemotherapeutics and cytotoxic agents by chemosensitizing cancer cells [16][23][24][25][26]. In our previous studies, CNTs and CNFs sensitized prostate and bladder cancer cells to the platinum-based chemotherapeutics carboplatin (CP) and cisplatin (CDDP) via an enhanced inhibition of short- and long-term
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2017

Nanotopographical control of surfaces using chemical vapor deposition processes

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 1250–1256, doi:10.3762/bjnano.8.126

Graphical Abstract
  • carboxylic acid-terminated alkanethiols, iron salt exposure on the surface could be spatially defined, which again prevented polymer growth [18]. Further investigations with a wider variety of PPX derivatives were conducted by Chen et al. [22]. For PPX derivatives containing oxygen or nitrogen, no inhibition
  • demonstrated. The inhibition of chain growth by transition metals was also demonstrated for different types of monomers by Kwong et al. [19][23]. Various metals and metal salts were found to inhibit the growth of acrylate-based polymers and poly(4-vinylpyridine) (P4VP). Copper salts such as CuCl2 and Cu(NO3)2
  • were identified for effective inhibition of all investigated types of polymers. The patterned deposition was demonstrated by screen printing of a solution of the metal salt using a mask. No polymer deposition occurred on locations treated with the metal salt (Figure 2c). In order to pattern surfaces
PDF
Album
Review
Published 12 Jun 2017

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

  • Liga Saulite,
  • Dominyka Dapkute,
  • Karlis Pleiko,
  • Ineta Popena,
  • Simona Steponkiene,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2017, 8, 1218–1230, doi:10.3762/bjnano.8.123

Graphical Abstract
  • daughter cells (Figure 3c). Inhibition of proliferation was additionally confirmed by analysing the cell number in the respective medium (data not shown). The addition of QDs did not change the expression of Ki67 (data not shown). QD effect on immunophenotype, proliferation and differentiation of MSCs The
  • observations have been reported in the study of mouse embryonic stem cells, where QD loss was still detected after the inhibition of cell proliferation, suggesting that QDs might be excreted from cells [50]. Indeed, we demonstrated that MSCs could be repetitively labelled by the removal of supernatants from QD
  • membrane transporters for the elimination of toxic reagents [53]. The induction of ABC transporter P-glycoprotein increases the elimination of QDs from HEK and HepG2 cells, while its inhibition demonstrated an opposite effect. The elimination rate was higher in HEK cells, because of the stem cell phenotype
PDF
Album
Full Research Paper
Published 07 Jun 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • %) are achieved for both hydrogels. The present work shows the merit of using the in situ-inhibition CP approach, where SNA15 moieties are regularly distributed along the hydrogel matrix for controlling the CP mineralization process. The combination of the self-assembly properties of ELRs with the
  • biomedical applications. At the same time, these materials, at the insoluble state, have the ability to control the formation of CP in terms of both phase and morphology, different from the ones formed at the soluble state. Conclusion The present work shows the merit of using the in situ-inhibition CP
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017
Other Beilstein-Institut Open Science Activities