Search results

Search for "precursor" in Full Text gives 587 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • -Fe2O3 fractal crystals by a cost-effective and eco-friendly microwave method [74]. Figure 13 shows SEM images of different hematite crystals obtained by varying precursor concentrations and additives. A dendritic particle structure with a middle stem of 3.5 µm and secondary branches of ca. 1 µm to 250
  • al. who annealed a zinc precursor [75]. Figure 14a–f shows SEM images of ZnO structures obtained at different temperatures. The fabricated structures had large surface area and affluent pores and were tested for sensing ethanol vapors. The authors reported good sensing response (34.5), rapid response
PDF
Album
Supp Info
Review
Published 09 Nov 2021

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • in presence of cobalt One of the main reasons why polyacrylonitrile is employed as the precursor material is the fact that it contains nitrogen in significant amounts. The nitrogen is retained in the structure to a certain degree depending on the carbonisation temperature [11][12]. In the previous
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • simulations of irradiation-driven transformations of complex molecular systems by means of the advanced software packages MBN Explorer and MBN Studio. Atomistic simulations performed following the formulated protocol provide valuable insights into the fundamental mechanisms of electron-induced precursor
  • fragmentation and the related mechanism of nanostructure formation and growth using FEBID, which are essential for the further advancement of FEBID-based nanofabrication. The developed computational methodology is general and applicable to different precursor molecules, substrate types, and irradiation regimes
  • . The methodology can also be adjusted to simulate the nanostructure formation by other nanofabrication techniques using electron beams, such as direct electron beam lithography. In the present study, the methodology is applied to the IDMD simulation of the FEBID of Pt(PF3)4, a widely studied precursor
PDF
Album
Full Research Paper
Published 13 Oct 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • . Based on morphological and structural analyses, it is suggested that seed particles (type 0) formed immediately after injecting the antimony precursor into the sulfur precursor. These seeds fused to form amorphous nanoparticles (type I) that contained a lower percentage of sulfur than that corresponding
  • temperature leads to larger particles. Furthermore, they have concluded that a chlorine-containing antimony precursor affects the morphology and crystallinity of the particles. Nevertheless, the study of Abulikemu et al. focused on using bis(trimethylsilyl) sulfide (TMS) as sulfur precursor since with this
  • of 180–210 °C to facilitate the synthesis process following the hot-injection method with a sulfur–oleylamine (S-OlAm) precursor. They have found that the temperature influences the crystallinity, shape, and size of the particles [21]. These studies revealed growth processes comprising a primary
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • creating a nontoxic platform for synthesizing nanomaterials with the potential for biological applications. Wet chemical reduction method using surfactants: pros and cons The widely used wet chemical approach for synthesizing nanomaterials is a facile reduction method involving a precursor metal salt and a
  • preferential facet binding in the solution phase. The seed-mediated approach is a multistep controlled redox reaction utilizing metal seed nanocrystals of 1.5–4.0 nm. The seed particles are synthesized by reducing precursor gold salt using an excess amount of a strong reducing agent, such as sodium borohydride
  • melting points, which interact via hydrogen bond to form a fluid at room temperature with a freezing temperature much below that of the individual precursor components. These strong hydrogen bonds restrict the recrystallization of the parent compounds [72]. There are numerous reports on DESs from various
PDF
Album
Review
Published 18 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • US wave propagation shears the liquid medium causing MB formation. The manufacturing process can be carried out by two methods. Firstly, a batch sonication is performed in which the precursor material of the MB shell is sonicated in the presence of the inner gas to be encapsulated. Secondly, a
  • continuous sonication is applied in which a continuous flow of both the inner gas and the shell precursor material are simultaneously sonicated in a uniform tank [156]. Microfluidic systems have recently been used as a method for MB production based on an interface between a liquid flow and a gas flow. T
PDF
Album
Review
Published 11 Aug 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • deposited on top of samples A and B at the same temperature. Bis(methylcyclopentadienyl)magnesium (CAS Number 40672-08-0) was used as the magnesium precursor. The positive impact of Mg on the operation of the ZnO/Si photovoltaic cells was published elsewhere [16]. The authors of this reference revealed
  • improved electron collection by band offset engineering. On top of the solar structure, AZO was deposited as a transparent contact [17][18]. Trimethylaluminium (TMA, CAS Number 75-24-1) was used as the Al precursor. In the ALD processes, high-purity nitrogen (purity 99.999%) was used as the carrier gas
PDF
Album
Full Research Paper
Published 21 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • chemically ordered non-ferromagnetic Fe60Al40 precursor film. Ferroelectric properties Similar to the magnetic anisotropy experiments described above, helium ion irradiation using the HIM has also been used to locally modify ferroelectric properties. For example, pinning of ferroelectric domains in
  • the beam energy and current, the growth of single-crystal nanowires was also shown. This is reminiscent of nanowire growth by the vapor–solid–liquid mechanism, except here the process was performed at room temperature and without the flow of a gaseous precursor. In the HIM case it was proposed that
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • nanowires. CuCl2 was used as a salt precursor providing chloride ions. Chloride ions play a vital role in regulating the growth of AgNWs. To prepare self-arranged silver nanowires, first, 150 mL of EG was stirred and heated at 160 °C for 1 h in order to remove any residual water from EG. The temperature was
PDF
Album
Full Research Paper
Published 01 Jul 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • passivation layer in the first few ALD cycles. By applying ALD, we were able to create both Al2O3 and AZO layers in a single ALD process conducted at 160 °C. Aluminum oxide was deposited within five cycles of (trimethylaluminum/Al(CH3)3, TMA, CAS:75-24-1) and H2O precursor supply while AZO required 10 multi
PDF
Album
Full Research Paper
Published 28 Jun 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • copper foil with methane gas as the precursor [31]. Next, graphene was transferred onto GaN NWs substrates. Due to low adhesive forces between graphene and corrugated substrates, the most common method to transfer graphene with the use of poly(methyl methacrylate) (PMMA) polymer could not be applied for
PDF
Album
Full Research Paper
Published 22 Jun 2021

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

  • Limin Wang,
  • Aisha Adebola Womiloju,
  • Christiane Höppener,
  • Ulrich S. Schubert and
  • Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551, doi:10.3762/bjnano.12.44

Graphical Abstract
  • salt to metallic silver by microwave irradiation in the presence of ethanol utilized as reducing agent (Figure 1a). In practice, the functionalization of the substrates requires only the placement of the cleaned glass supports into a microwave vial containing an aqueous silver acetate precursor co
  • -mixed with ethanol. Subsequently, the closed microwave vials are subjected to microwave irradiation for two minutes. In the first phase of the microwave irradiation the temperature of the precursor mixture rapidly increases (see Supporting Information File 1, Figure S1 for the temperature diagram of a
  • (methanol, ethanol, DMF, toluene, and DMSO) were used without further purification. 4-ATP was also utilized as purchased. Preparation of surface-enhanced Raman spectroscopy substrates A silver acetate precursor solution was used as a metal salt and ethanol was utilized as a reducing agent. Commercially
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • collected and milled into powder in an agate mortar. Synthesis of Cl-doped polymeric carbon nitride As a precursor of chlorine, CDATA was used. Firstly, 4 g of melamine was mixed with 200 mg of CDATA in 20 mL of deionized water, upon stirring, for 1 h at room temperature. The solutions were then dried at 80
PDF
Album
Full Research Paper
Published 19 May 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • ]. During the typical SCS process, the initial phase is carried out at low temperatures and is associated with the evaporation of water or solvent. This allows for the formation of a gel, which acts as the precursor in the main part of the self-propagation reaction. This step is carried out at elevated
  • , the resulting gel precursor was heated in an alumina crucible from 300 to 700 °C for 5 h in air. The flowchart of the synthesis is presented in Figure 4. Characterization of the Co3O4 material: The structural properties of the Co3O4 material were determined using powder X-ray diffraction (XRD) and
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • dielectric properties (e.g., SiO2 and ZnO) exhibit a dependence of the electrical resistance with temperature [22][23]. SiO2 and ZnO films are obtained by various deposition techniques, such as matrix-assisted pulsed laser evaporation (MAPLE) [24][25], spin coating of sol–gel precursor solutions [26], radio
PDF
Album
Full Research Paper
Published 19 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • can be easily synthesized from the precursor material bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2) in different ionic liquids without any additional stabilizing or reducing agents [46]. Ionic liquids have the ability to exfoliate graphene oxide into single sheets. Thus, a higher surface area can be
  • supported on reduced graphene oxide paves the way for their application as dopant in other metal oxide gas sensors. Experimental Due to the sensitivity of the precursor substances towards moisture and oxidation, all experiments were carried out in a purified argon (grade 99.998 vol %) or nitrogen (grade
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • ” approach for the fabrication of arbitrarily shaped nanostructures [1][2][3][4][5]. The most prominent method within the FEBIP family is electron beam-induced deposition (EBID). In EBID, a focused electron beam is used to locally dissociate adsorbed precursor molecules. Thus, a localized deposit of the non
  • satisfying results [4][9]. However, for certain precursors, EBID yields clean deposits when carried out under ultrahigh vacuum (UHV) conditions. It was shown that in UHV, for some precursors, an autocatalytic growth (AG) process occurs already at room temperature, which leads, upon further precursor dosage
  • , to the dissociation of the precursor molecules on top of the initial EBID deposit. In the case of Fe(CO)5 this AG process results in the formation of deposits consisting of pure iron [10]. A second method from the FEBIP family, namely electron beam-induced surface activation (EBISA), also largely
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • combination with a thermal stability up to 2600 K [50], renders graphene an exciting candidate for room-temperature bolometry [51]. Single-layer graphene was grown by chemical vapor deposition onto a multicrystalline copper foil using methane as precursor gas at 1035 °C. For the transfer process, the graphene
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • substitutions on deposit composition and growth rate indicates that the most suitable organic ligand for the gold precursor is triazole-based, with the best deposit composition of 15 atom % gold, while the most suitable anionic ligand is the trifluoromethyl group, leading to a growth rate of 1 × 10−2 nm3/e
  • the deposit. A major challenge is therefore to achieve control over the composition of the deposited material through a proper design of the precursor molecule [17][18]. Gold deposition has been one of the earliest interests in FEBID [19], as gold 3D-nanostructures can find a wide range of
  • gold(I) complexes has been explored, such as Au(PF3)Cl [27][28][29][30] and Au(CO)Cl [31], which gave high-purity deposits. Unfortunately, the high instability of these precursor molecules has severely hindered their use as FEBID precursors. For the compounds [AuMe2Cl]2 and Au(PMe3)Me [32], it was
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • ) [35]. Thin CNMs were prepared from terphenylthiol precursor molecules, thick CNMs were obtained from CNM Technologies GmbH (Bielefeld, Germany). The CNMs used for this experiment offer a low conductivity to give a negligible SE contribution. Monte Carlo simulations of the ion trajectories were run
PDF
Album
Full Research Paper
Published 26 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • type, reagent type, precursor concentration, temperature, process duration, and pH. Physical and chemical methods have been among the most common methods to synthesize silver nanostructures; however, they possess substantial disadvantages and short-comings, especially compared to green synthesis
  • reaction parameters, such as temperature, pH, precursor, and reagent concentration, on silver nanostructure size and morphology are discussed. Also, green synthesis techniques used for the synthesis of one-dimensional (1D) silver nanostructures have been reviewed, and the potential of alternative green
  • either composed of an inert metal, such as titanium, or any metal of interest of which the nanoparticles will be produced, for instance, silver for the synthesis of AgNPs [129][131]. In the case of titanium electrodes, AgNO3 is used as the precursor, an electric discharge takes place between cathode and
PDF
Album
Review
Published 25 Jan 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • stable freestanding monolayers produced from irradiation-induced cross-linking of self-assembled monolayers (SAMs) [35]. They have a thickness in the range of 1–2 nm and can be made from a variety of carbon precursor molecules [36]. They are well characterized in terms of their permeability [37][38] and
  • performed to obtain both optimal orientations of the PM patches and coverage of the CNM substrate. Due to the limited availability of c-His PM, wild-type PM (WT PM) has been used for all preliminary experiments. It has been found that the most appropriate CNM precursor for this purpose is NBPT since the
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • precursor was 0.1 s with a purge time of 5 s and the pulse of H2O was 0.1 s with a purge time of 10 s. TMA and water were maintained at 22 °C. Nitrogen (99.999%, Linde) was used as a carrier gas. The deposition of aluminium oxide films on silicon or FTO was carried out by performing 30, 60, 120, and 200
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • individual nanomaterials can be a challenging task. However, it opens up opportunities for the production of increasingly complex nanostructures. Unusual rolled multiwall carbon nanotube structures are synthesized here by simply inducing a change of precursor composition during the growth of multiwall carbon
  • during sample preparation. Nevertheless, on MWCNT structures with only one junction a change in structure can still be related to the precursor used. In the case of N1/C2 junctions (Figure 4a and Figure 4b) the interface between the two expected sections is conveniently marked by darker features, which
  • . First, a liquid precursor consisting of toluene (99.9%, Sigma-Aldrich) and 5 wt % of ferrocene (98%, Aldrich, purified via sublimation at 90 °C prior to use) was injected into the furnace with Ar gas flow at 2000 sccm in a first precursor line (Supporting Information File 1, Figure S3) for 3 min. In a
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • reactions, methane reforming, and hydrogen evolution [35][36][37][38][39][40]. Wang et al. [38] reported the growth of nickel phyllosilicate by simultaneous reaction of a silica precursor (tetraethylorthosilicate), nickel chloride, water, and urea in a hydrothermal reactor at 210 °C for 12 h. They obtained
  • NiPS nickel phyllosilicate structure Si2Ni3O5(OH)4 [42][43]. Basically, NiPS is formed upon the precipitation of nickel species onto a silica surface after basification of a nickel(II) solution [44]. Depending on the deposition-precipitation time, the molar ratio between urea and nickel precursor, and
  • °C, urea hydrolysis took place reducing the nickel precursor to nickel species, which diffused into the silica layers through the mesoporous shell. The nickel species reacted with the surface hydroxides to give nickel phyllosilicate via a Ni–O–Si polymerization reaction. TiO2 (dTiO2 = 30 ± 9 nm) was
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020
Other Beilstein-Institut Open Science Activities