Search results

Search for "surface topography" in Full Text gives 131 result(s) in Beilstein Journal of Nanotechnology.

Restructuring of an Ir(210) electrode surface by potential cycling

  • Khaled A. Soliman,
  • Dieter M. Kolb,
  • Ludwig A. Kibler and
  • Timo Jacob

Beilstein J. Nanotechnol. 2014, 5, 1349–1356, doi:10.3762/bjnano.5.148

Graphical Abstract
  • , however less pronounced or less well-defined. Electrochemical treatment including potential cycling of Ir(210) in 0.1 M HCl did not lead to comparable changes, probably because adsorbed chloride hinders oxygen adsorption. In situ STM of Ir(210) after repetitive fast potential cycles The change in surface
  • topography of Ir(210) by repetitive oxidation–reduction potential cycles has been investigated by using in situ STM. Figure 6 shows the corresponding images of Ir(210) in 0.1 M H2SO4 after cycling for 1 min, 20 min, 60 min and 240 min. The series of STM images indicates that the surface morphology is
PDF
Album
Full Research Paper
Published 25 Aug 2014

Surface topography and contact mechanics of dry and wet human skin

  • Alexander E. Kovalev,
  • Kirstin Dening,
  • Bo N. J. Persson and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1341–1348, doi:10.3762/bjnano.5.147

Graphical Abstract
  • we have analyzed the frictional properties of skin by using the Persson contact mechanics theory. In [6] the surface topography of skin was measured by using an optical method with a resolution of the order of 1 μm. In this paper we report on AFM measurements at a higher resolution. From both optical
  • only on |q| for surfaces with statistically isotropic roughness. Figure 4 shows the power spectra obtained from the AFM topography data, Figure 3, as a function of the wave vector (log10–log10 scale). The red and blue lines are calculated using the surface topography data from Figure 10 in [3] for dry
  • the skin and the countersurface [22]. Conclusion We studied the contact mechanics and friction for dry and water-lubricated human skin. The surface topography is studied by using two different methods, white light interferometry and AFM, which in combination allowed us to obtain the complete surface
PDF
Album
Full Research Paper
Published 22 Aug 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • scale [11]. These properties must be kept up over a longer period of time until new skin is moulted. Frictional properties of snake skin in contact with a solid partner depend on (i) the surface energy, (ii) material properties, and (iii) surface topography of the tribo-pair [12][13]. The surface energy
  • gain a deeper understanding of how frictional properties are influenced by surface topography. The results obtained can be explained by mechanical interactions between surfaces at two scales: at a nano scale by the influence of the real contact area, and at a micro scale by an interlocking of the probe
  • ). Despite the fact that frictional anisotropy is not completely congruent to the angle distribution, it can be derived, that the slope of surface topography influences frictional properties, as proposed by, e.g., Abdel-Aal [61], Persson [36] and Popov [37]. Our experiments reveal an influence of the surface
PDF
Album
Full Research Paper
Published 21 Jul 2014

Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

  • Elena Gorb,
  • Sandro Böhm,
  • Nadine Jacky,
  • Louis-Philippe Maier,
  • Kirstin Dening,
  • Sasha Pechook,
  • Boaz Pokroy and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2014, 5, 1031–1041, doi:10.3762/bjnano.5.116

Graphical Abstract
  • , as well as in C50, the small dimensions of the surface structures together with their dense distribution on the surface resulted in a rather smooth surface topography. Such substrate profiles can be replicated by very deformable material down to a micro- or even nanometer scale due to high
PDF
Album
Full Research Paper
Published 14 Jul 2014

The softening of human bladder cancer cells happens at an early stage of the malignancy process

  • Jorge R. Ramos,
  • Joanna Pabijan,
  • Ricardo Garcia and
  • Malgorzata Lekka

Beilstein J. Nanotechnol. 2014, 5, 447–457, doi:10.3762/bjnano.5.52

Graphical Abstract
  • provides the information about fluorescently labeled structures while AFM delivers the topology and the mechanical properties of the sample. In our studies, the fluorescent images of actin filaments were compared with the surface topography. The cytoskeleton is important for a normal cell function, however
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • comparable and reproducible investigation of the influence of the surface microstructure on the frictional properties. In order to gain insight in the influence of the snake-inspired anisotropic surface topography, additional surface topographies were investigated. The frictional coefficient of these
  • skin. Each selected type of microstructure is used to investigate the influence of certain features of snake scales responsible for specific frictional behavior. Results In order to characterize the influence of surface topography on frictional properties frictional measurements on differently
  • . Therefore, we were able to investigate in great detail the variations in the frictional behavior depending on the surface topography. Our data did not confirm the previous statement (e.g., [27][28]) that a low frictional coefficient correlates with no or a minimal occurrence of stick-slip behavior. The
PDF
Album
Full Research Paper
Published 24 Jan 2014

Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification

  • M. Temmen,
  • O. Ochedowski,
  • B. Kleine Bussmann,
  • M. Schleberger,
  • M. Reichling and
  • T. R. J. Bollmann

Beilstein J. Nanotechnol. 2013, 4, 625–631, doi:10.3762/bjnano.4.69

Graphical Abstract
  • mechanically exfoliated under ambient conditions on 6H-SiC(0001) are modified by (i) swift heavy ion (SHI) irradiation, (ii) by a force microscope tip and (iii) by severe heating. The resulting surface topography and the surface potential are investigated with non-contact atomic force microscopy (NC-AFM) and
PDF
Album
Full Research Paper
Published 07 Oct 2013

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • Fe-based alloys. On the other hand, it is known that the cellular response to materials is significantly influenced by the microstructure of the implanted materials, their surface roughness, their surface topography and their chemical compositions. In order to study [61] the effect of the nanoscale
PDF
Album
Review
Published 13 Sep 2013

Digging gold: keV He+ ion interaction with Au

  • Vasilisa Veligura,
  • Gregor Hlawacek,
  • Robin P. Berkelaar,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2013, 4, 453–460, doi:10.3762/bjnano.4.53

Graphical Abstract
  • extremely small [16][17]. This makes the microscope highly suited for obtaining high-resolution images of the surface topography. An image can further be recorded by simultaneous collection of the backscattered He with a microchannel plate [18]. The microscope is also equipped with a silicon drift detector
PDF
Album
Full Research Paper
Published 24 Jul 2013

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • ., surface topography and potential, are still unclear and have the potential to increase the efficiency and long-term stability of the devices. Investigations of nanoscaled photovoltaic devices require nanometer-scale measuring methods, including time-resolved measurements of the carrier dynamics [15][16
PDF
Album
Full Research Paper
Published 01 Jul 2013

Polynomial force approximations and multifrequency atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 352–360, doi:10.3762/bjnano.4.41

Graphical Abstract
  • that macroscopic force models, such as the DMT model, might not be applicable on the nanoscale [27] and that tip shape and surface topography lead to an interaction geometry that is different from the model geometry of a perfect sphere and a perfectly flat plane [20]. Moreover, the DMT model does not
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2013

High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

  • Mark Cronin-Golomb and
  • Ozgur Sahin

Beilstein J. Nanotechnol. 2013, 4, 243–248, doi:10.3762/bjnano.4.25

Graphical Abstract
  • the surface topography and local mechanical response with high spatial resolution [20][31]. This mode uses a T-shaped cantilever with an offset tip. When used in dynamic AFM, the cantilever vibrates up and down, similar to conventional cantilevers. In addition to the vertical motion, tip–sample
PDF
Album
Full Research Paper
Published 05 Apr 2013

Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime

  • Aditya Kumar,
  • Thorsten Staedler and
  • Xin Jiang

Beilstein J. Nanotechnol. 2013, 4, 66–71, doi:10.3762/bjnano.4.7

Graphical Abstract
  • models of rough surface topography are based on the relative distribution of asperities within the contact. In order to understand the effect of roughness, statistical rough surface contact modes have been introduced starting from the very early work of Abbot and Firestone in 1933 [4] for purely plastic
  • detailed information about surface topography and surface roughness. The samples were imaged with commercial tips featuring a nominal tip radius of 10 nm in a feedback-controlled mode on all three axes. Five 8 × 8 μm2 images with a pixel resolution of 512 × 512 were taken at different surface positions on
PDF
Album
Full Research Paper
Published 28 Jan 2013

Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

  • Adrian Iovan,
  • Marco Fischer,
  • Roberto Lo Conte and
  • Vladislav Korenivski

Beilstein J. Nanotechnol. 2012, 3, 884–892, doi:10.3762/bjnano.3.98

Graphical Abstract
  • the etching procedure is shown in Figure 3, imaged by AFM for etching quality, surface topography, and particle size. The height of the particles is measured accurately, but not the diameter, since the convolution of a small particle and the tip produces a width distortion. Keeping all the process
PDF
Album
Full Research Paper
Published 19 Dec 2012

Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing

  • Blake W. Erickson,
  • Séverine Coquoz,
  • Jonathan D. Adams,
  • Daniel J. Burns and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2012, 3, 747–758, doi:10.3762/bjnano.3.84

Graphical Abstract
  • method uses an iterative thresholded processing algorithm for rapid and accurate separation of background and surface topography. This separation prevents artificial bias from topographic features and ensures the best possible coherence between the different images in a sequence. This method is equally
  • generate a single image of a sample surface or surfaces of multiple samples. The resulting data sets are relatively small and easy to correct by hand. In an emerging part of the field, the goal is no longer to see just the detailed surface topography; but rather, to also see how this topography changes as
  • regions, and not real topography), the minimization of will improve the image. Commonly used methods for correction of inherent distortions The goal of AFM image processing is to correct the inherent distortions mentioned above and recover an accurate representation of the undistorted surface topography
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2012

Mapping mechanical properties of organic thin films by force-modulation microscopy in aqueous media

  • Jianming Zhang,
  • Zehra Parlak,
  • Carleen M. Bowers,
  • Terrence Oas and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 464–474, doi:10.3762/bjnano.3.53

Graphical Abstract
  • lateral resolution is important for a broad range of applications in materials science [1][2][3][4][5][6][7][8][9][10] and in the life sciences [11][12][13][14][15][16][17][18][19][20]. The atomic force microscope (AFM) [21], due to its force sensitivity and ability to image surface topography with high
  • from the surface-topography-induced deflection response of the cantilever, thus precluding clear signal deconvolution [29]. Both the first and second harmonics, however, do not interfere with the feedback loop and can be detected by lock-in techniques. At low forces, the second-harmonic factor (β
PDF
Album
Supp Info
Letter
Published 26 Jun 2012

Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

  • Fredy Mesa,
  • William Chamorro,
  • William Vallejo,
  • Robert Baier,
  • Thomas Dittrich,
  • Alexander Grimm,
  • Martha C. Lux-Steiner and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2012, 3, 277–284, doi:10.3762/bjnano.3.31

Graphical Abstract
  • Figure 2 provide additional information about the buffer layers and the Cu3BiS3 film. The presented images represent the raw data, shifted only by the constant work function of the tip. Due to the rough surface topography, sporadic tip changes could not be avoided (visible as the horizontal streaks
PDF
Album
Full Research Paper
Published 23 Mar 2012

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

  • Christian Held,
  • Thomas Seyller and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2012, 3, 179–185, doi:10.3762/bjnano.3.19

Graphical Abstract
  • comparison of samples prepared in UHV and in an argon atmosphere reveals huge differences in the surface topography (Figure 2a and Figure 2b). While the sample prepared in UHV exhibits the pitted structure described above, the sample prepared in an argon atmosphere shows only a few straight step bunches
PDF
Album
Full Research Paper
Published 29 Feb 2012

Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

  • Zhe She,
  • Andrea DiFalco,
  • Georg Hähner and
  • Manfred Buck

Beilstein J. Nanotechnol. 2012, 3, 101–113, doi:10.3762/bjnano.3.11

Graphical Abstract
  • -off (Figure 7b). We ascribe this to nonvertical growth of the trench walls due to transport-limited deposition, similar to subconformal Cu deposition in microelectronics [55][56]. Besides the definition of the lateral dimensions, another point of interest is the surface topography. Reminding ourselves
PDF
Album
Full Research Paper
Published 06 Feb 2012

Fabrication of multi-parametric platforms based on nanocone arrays for determination of cellular response

  • Lindarti Purwaningsih,
  • Tobias Schoen,
  • Tobias Wolfram,
  • Claudia Pacholski and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2011, 2, 545–551, doi:10.3762/bjnano.2.58

Graphical Abstract
  • Lindarti Purwaningsih Tobias Schoen Tobias Wolfram Claudia Pacholski Joachim P. Spatz Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany 10.3762/bjnano.2.58 Abstract Cellular response to both surface topography
  • finding for research dealing with the reactions of neuron-like tissue in the immediate moments after direct contact with an implanted surface. Keywords: block copolymer nanolithography; cell adhesion; nanostructures; surface chemistry; surface topography; Introduction Nanostructured materials for
  • medical applications are intended to be in contact with human tissue and therefore to influence cell function by their surface topography as well as by their surface chemistry. Countless studies on cellular response to nanoscale topographies [1][2][3][4], chemical gradients [5][6], and combinations of
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2011

The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 302–310, doi:10.3762/bjnano.2.35

Graphical Abstract
  • effects on insect attachment and examine the contribution of surface topography, we prepared replicas of the de-waxed pitchers and tested them together with de-waxed plant samples in the second type of traction experiments. Replicas were obtained by applying the two-component dental wax (Coltène President
PDF
Album
Full Research Paper
Published 16 Jun 2011

The role of the cantilever in Kelvin probe force microscopy measurements

  • George Elias,
  • Thilo Glatzel,
  • Ernst Meyer,
  • Alex Schwarzman,
  • Amir Boag and
  • Yossi Rosenwaks

Beilstein J. Nanotechnol. 2011, 2, 252–260, doi:10.3762/bjnano.2.29

Graphical Abstract
  • measure the surface topography, while the oscillations due to the electrostatic force (in amplitude modulated AM-KPFM at the second resonance or in frequency modulated FM-KPFM at several hundred Hz [16]) are nullified by adjusting Vdc(r). The first resonance oscillations have a strong effect on the
  • discussed below. The effect of the first resonance In either the single or dual pass KPFM methods the cantilever oscillates at the frequency of its first resonance in order to measure the surface topography in the non-contact mode. In the previous sections the cantilever was considered rigid, meaning that
PDF
Album
Full Research Paper
Published 18 May 2011

Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

  • Philipp Comanns,
  • Christian Effertz,
  • Florian Hischen,
  • Konrad Staudt,
  • Wolfgang Böhme and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2011, 2, 204–214, doi:10.3762/bjnano.2.24

Graphical Abstract
  • . We further tried to mimic the properties and effects of the natural integument by manufacturing replicas of the surface topography. We found that in fact this micro ornamentation yields a super-wettable (superhydrophilic) surface, and the semi-tubular capillaries allow for an efficient – and in the
PDF
Album
Supp Info
Full Research Paper
Published 13 Apr 2011

Superhydrophobicity in perfection: the outstanding properties of the lotus leaf

  • Hans J. Ensikat,
  • Petra Ditsche-Kuru,
  • Christoph Neinhuis and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 152–161, doi:10.3762/bjnano.2.19

Graphical Abstract
  • as the surface topography, robustness and the unique properties of the epicuticular wax. The aim of this article is to integrate the relevant features of the lotus leaf, and to compare them with superhydrophobic leaves of other plant species in order to illustrate their significance. Results and
PDF
Album
Video
Full Research Paper
Published 10 Mar 2011

Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

  • Glen McHale,
  • Michael I. Newton,
  • Neil J. Shirtcliffe and
  • Nicasio R. Geraldi

Beilstein J. Nanotechnol. 2011, 2, 145–151, doi:10.3762/bjnano.2.18

Graphical Abstract
  • flexible solid possessing no curvature (or stretching) energy and, hence, a vanishing elastocapillary length. In the study of liquid marbles, the simplest assumption is that each grain is spherical in shape and has no particular surface topography. As a consequence all grains, irrespective of their surface
PDF
Album
Full Research Paper
Published 10 Mar 2011
Other Beilstein-Institut Open Science Activities