Search results

Search for "CNTs" in Full Text gives 166 result(s) in Beilstein Journal of Nanotechnology.

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • and chemical properties, intrinsic very high aspect ratios and tiny tip radii, CNTs looked very promising for LAO-AFM application. Indeed, both single and multi-walled CNTs showed remarkable patterning capabilities [16]. However, this approach has been nearly abandoned, due to the high cost and poor
  • substrates in amplitude modulation dynamic mode of operation. In spite of the morphological and chemical resemblance, CNFs and CNTs exhibit fundamental structural differences. Both CNF and CNT are high aspect ratio morphologies (one-dimensional) made primarily of atomic carbon. However, a CNF consists of
PDF
Album
Full Research Paper
Published 19 Jan 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • doped carbon nanomaterials. Although phosphorus (P) was theoretically proposed a long time ago as a possible alternative n-type dopant [96], the first experimental reports on phosphorus doping of CNTs and graphene have only been published recently [97][98][99][100]. Like nitrogen, phosphorus has five
PDF
Album
Review
Published 15 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • ; chemical modifications; medical applications; synthesis methods; toxicity; Review Introduction Boron nitride nanotubes (BNNTs) are known as structural analogs of carbon nanotubes (CNTs) but with superior properties [1][2][3]. Although they have structural similarities, they significantly differ in their
  • chemical and physical properties. In contrast to CNTs, their electrical properties are not dependent on their chirality and diameter since they have a large band gap of about 5.5 eV. BNNTs also have excellent radiation shielding properties when compared to CNTs [4]. Since the BNNTs are composed of B and N
  • atoms, their electronic structures are expected to be rather different from that of CNTs. The charge distribution is asymmetric in B–N bonds in BNNTs as compared to the C–C bonds in CNTs [5]. The electron density of B is attracted to the N atoms due to its higher electronegativity. Thus, the B–N bonds
PDF
Album
Review
Published 08 Jan 2015

Liquid-phase exfoliated graphene: functionalization, characterization, and applications

  • Mildred Quintana,
  • Jesús Iván Tapia and
  • Maurizio Prato

Beilstein J. Nanotechnol. 2014, 5, 2328–2338, doi:10.3762/bjnano.5.242

Graphical Abstract
  • such as fullerenes and carbon nanotubes (CNTs) [23][24][25]. Using these solvents, it is possible to exfoliate graphite, resulting in defect-free graphene layers of high concentration. One limitation of this methodology is its inability to completely eliminate the absorbed solvent from the graphene
  • edge carbon atoms. Rolling and sealing graphene An important potential application of exfoliated graphene is the tailored production of other carbon nanostructures such as fullerenes [29] and CNTs. To this effect, we have demonstrated the longstanding visualised strategy of rolling and sealing a
  • graphene sheet [30]. This process is possible due to the ultrasonication of graphene upon addition of ferrocenecarboxaldehyde (Fc–CHO) in DMF, Figure 3. Fc–CHO is a reducing agent that prevents oxidation and radical reactions. Additionally, ferrocene derivatives are used in the synthesis of CNTs as carbon
PDF
Album
Review
Published 04 Dec 2014

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • interest in the fields of nanotechnology and biomedicine [1][2][3]. Special attention has been paid to biomimetic membranes that convey biocompatibility to the hybrid materials [4][5][6][7]. One of the building blocks used to construct nanomaterials are carbon nanotubes (CNTs), which are allotropes of
  • carbon with a unique nanostructure consisting of graphene sheets (layers of sp2-hybridized carbon atoms, perfectly hexagonally packed in a honeycomb network) rolled up into tubular shapes with a very large length/diameter ratio. This structure gives the unusual properties of CNTs such as: high mechanical
  • strength (due to C–C sp2 bonds, which is one of the strongest bonds), flexibility without breakage or damage, high elasticity, good electrical conductivity, and chemical stability. These cylindrical graphene nanotubes are considered one of the most attractive nanomaterials. Applicability of CNTs in the
PDF
Album
Full Research Paper
Published 02 Dec 2014

Electrical contacts to individual SWCNTs: A review

  • Wei Liu,
  • Christofer Hierold and
  • Miroslav Haluska

Beilstein J. Nanotechnol. 2014, 5, 2202–2215, doi:10.3762/bjnano.5.229

Graphical Abstract
  • mechanical bending of CNTs lying on the substrate as well as by the chemical inhomogeneity induced during the fabrication process. The transmission line model (TLM) developed for planar devices [47] provides an approach to determine both the contact resistance and the channel resistance. The applicability of
  • open ends of nanotube. In this case, the defect sites (dangling bonds) on the ends of the CNTs are intended to provide additional reaction sites to greatly increase the interaction energy between the metal and the CNT [49]. As an example, nanotube/carbide heterojunctions (such as TiC) can be formed at
PDF
Album
Review
Published 21 Nov 2014

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • often generate entirely new possibilities, pushing the limits of the accepted boundaries of material properties within which engineers operate. The identification of carbon nanotubes (CNTs) [1][2][3][4] and later, single-walled nanotubes (SWNTs) [5][6] is one example of this phenomenon. One such
PDF
Album
Review
Published 20 Nov 2014

Sequence-dependent electrical response of ssDNA-decorated carbon nanotube, field-effect transistors to dopamine

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2113–2121, doi:10.3762/bjnano.5.220

Graphical Abstract
  • FETs lack responsivity and selectivity for its detection due to the presence of interfering compounds such as uric acid (UA). Surface modification of CNTs using single-stranded deoxyribonucleic acid (ssDNA) renders the surface responsive to DA and screens the interferent. Due to the presence of
  • sequence combinations, which interact differently with CNTs as well as DA, and consequently, this influences the FET response. The transistor electrical parameters such as conductance, transconductance, threshold voltage and hysteresis gap extracted from the current–voltage characteristics are indicators
PDF
Album
Full Research Paper
Published 13 Nov 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • of the channel length on hybridization detection. One proposed method to confine hybridization events on the channel surface and to reduce the influence of contacts is the use of long CNTs. Thus the signal response is a consequence of the alteration in the intrinsic electronic property of the SWCNT
  • for the detection studies. Specifically, only semiconducting FETs were used for the study. SEM (Jeol, JSM-7600F) was used to verify the existence of the CNTs between the electrodes. AFM (Asylum Research, Cypher AFM) in tapping mode was used to obtain the height profile, which gives the diameter of the
  • . on the response of FET when multiple sensing mechanisms contribute to a change in G, gm and Vth. Results and Discussion Figure 1a shows an SEM image of the as-grown, long CNTs. Figure 1b,c shows the AFM image and height profile of an individual SWCNT. The diameter distribution of the SWCNTs is shown
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

  • Domenico Melisi,
  • Maria Angela Nitti,
  • Marco Valentini,
  • Antonio Valentini,
  • Teresa Ligonzo,
  • Giuseppe De Pascali and
  • Marianna Ambrico

Beilstein J. Nanotechnol. 2014, 5, 1999–2006, doi:10.3762/bjnano.5.208

Graphical Abstract
  • (CNTs) in this field have shown interesting results, in particular in new technologically advanced nanoelectronic devices [4][5]. Photodetectors based on films of CNTs (both bundle and carpet distribution) on silicon, have been previously analyzed in the visible and IR spectral regions [6][7]. Moreover
  • the chemical, mechanical and electrical properties make CNTs also suitable to fabricate a wide range of radiation detectors for space applications, high energy physics and medical instrumentation [7][8][9]. The common technique obtain CNT films is chemical vapour deposition (CVD), but some deposition
  • deposition technique for depositing CNTs on silicon, starting from a powder, at low temperatures, without catalyst and an intermediate layer [7]. By using this spray technique, CNT films on silicon-based photodetectors were prepared, achieving quantum efficiency (QE) values in the visible light range
PDF
Album
Full Research Paper
Published 05 Nov 2014

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • ; Review Introduction Since the discovery of the fullerene C60 in 1985 by Curl, Kroto and Smalley [1], carbon nanomaterials have been the focus of interdisciplinary chemical research. In the following years, several other carbon based nanomaterials were discovered, namely carbon nanotubes (CNTs) [2][3][4
  • method of choice. The covalent as well as the non-covalent functionalization of CNTs [22][23][24] have been widely studied in the past decades and can serve as inspiration for possible synthetic strategies to decorate CNOs with a variety of functional groups and also to increase the solubility of CNO
  • functionalization of CNOs, especially with small molecules or surfactants, which is widely described for CNTs [23], has not been reported so far. Covalent functionalization Synthetic procedures for the covalent functionalization of CNOs are largely based on previously described strategies for the functionalization
PDF
Album
Review
Published 04 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • in brain implants, are within reach thanks to the advancements in nanotechnology. In particular, carbon-based nanostructured materials, such as graphene, carbon nanotubes (CNTs) and nanodiamonds (NDs), have demonstrated to be highly promising materials for designing and fabricating nanoelectrodes and
  • allotropes, the most widely known are carbon nanotubes (CNTs) and fullerenes, graphite and graphene (sp2), and diamond (sp3). From these distinct hybridisations, different properties are inherent to these allotropes. Carbon nanotubes (CNTs): CNTs, first reported by Iijima in 1991 [1], are hollow cylinders
  • made of one (i.e., single-walled CNTs, SWCNTs) or several (i.e., multi-walled CNTs, MWCNTs) layers of graphene. They are obtained by a variety of methods, including chemical vapour deposition (CVD) and arc-discharge, and their electronic properties depend solely on geometric parameters, such as
PDF
Album
Correction
Review
Published 23 Oct 2014

Non-covalent and reversible functionalization of carbon nanotubes

  • Antonello Di Crescenzo,
  • Valeria Ettorre and
  • Antonella Fontana

Beilstein J. Nanotechnol. 2014, 5, 1675–1690, doi:10.3762/bjnano.5.178

Graphical Abstract
  • Antonello Di Crescenzo Valeria Ettorre Antonella Fontana Dipartimento di Farmacia, Università “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy 10.3762/bjnano.5.178 Abstract Carbon nanotubes (CNTs) have been proposed and actively explored as multipurpose innovative nanoscaffolds for
  • applications in fields such as material science, drug delivery and diagnostic applications. Their versatile physicochemical features are nonetheless limited by their scarce solubilization in both aqueous and organic solvents. In order to overcome this drawback CNTs can be easily non-covalently functionalized
  • with different dispersants. In the present review we focus on the peculiar hydrophobic character of pristine CNTs that prevent them to easily disperse in organic solvents. We report some interesting examples of CNTs dispersants with the aim to highlight the essential features a molecule should possess
PDF
Album
Review
Published 30 Sep 2014

Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

  • Christoph Nick,
  • Sandeep Yadav,
  • Ravi Joshi,
  • Christiane Thielemann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2014, 5, 1575–1579, doi:10.3762/bjnano.5.169

Graphical Abstract
  • neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures
  • (CNTs) are attractive for various sensing and electronic applications. These include, but are not limited to, gas sensors [1], mechanical sensors [2], biosensors (e.g., for glucose or DNA) [3][4], and vertical interconnect access (vias) applications based on CNT bundles [5]. CNTs have also sparked
  • stimulate neural activity. CNTs do have a high capacity and low impedance, e.g., compared to IrO2 which is widely used as electrical interface for cells, as has been manifested by cyclic voltammetry and impedance spectroscopy [9]. Thus CNTs allow to minimise the stimulation voltage as well as the electrode
PDF
Album
Supp Info
Video
Full Research Paper
Published 17 Sep 2014

Nano-rings with a handle – Synthesis of substituted cycloparaphenylenes

  • Anne-Florence Tran-Van and
  • Hermann A. Wegner

Beilstein J. Nanotechnol. 2014, 5, 1320–1333, doi:10.3762/bjnano.5.145

Graphical Abstract
  • as fullerene [1], graphene [2] and carbon nanotubes (CNTs) [3]. Research on these materials has been originally conducted by physicists. Also, the preparation methods relied on physical processes [4][5]. In the past decade the field is also more and more a playground for organic chemists as these
  • in the target molecule. For CNTs a selective synthesis, which controls all structural parameters, is of special interest as they determine the properties and, finally, the field of application [7][8][9][10]. For armchair carbon nanotubes, cycloparaphenylenes (CPPs) have been designed as potential
  • calculated with the same method (62 kcal/mol). Nanorings with inserted acene units One of the benefits of applying CPPs as templates for the preparation of CNTs is the possibility to control the chirality of the CNT by incorporating the desired chirality into the precursor. The Itami group applied their
PDF
Album
Review
Published 20 Aug 2014

Growth and characterization of CNT–TiO2 heterostructures

  • Yucheng Zhang,
  • Ivo Utke,
  • Johann Michler,
  • Gabriele Ilari,
  • Marta D. Rossell and
  • Rolf Erni

Beilstein J. Nanotechnol. 2014, 5, 946–955, doi:10.3762/bjnano.5.108

Graphical Abstract
  • , combining TiO2 nanocrystals and carbon nanotubes (CNTs) offers enhanced photosensitivity and improved photocatalytic efficiency, which is key to achieving sustainable energy and preventing environmental pollution. Hence, it has aroused a tremendous research interest. This report surveys recent research on
  • the topic of synthesis and characterization of the CNT–TiO2 interface. In particular, atomic layer deposition (ALD) offers a good control of the size, crystallinity and morphology of TiO2 on CNTs. Analytical transmission electron microscopy (TEM) techniques such as electron energy loss spectroscopy
  • /metal oxide material systems. Keywords: atomic layer deposition (ALD); carbon nanotubes; electron energy loss spectroscopy (EELS); interface; titanium dioxide (TiO2); transmission electron microscopy (TEM); Introduction Since the discovery by Iijima in 1991, carbon nanotubes (CNTs) have always been on
PDF
Album
Review
Published 02 Jul 2014

Gas sensing with gold-decorated vertically aligned carbon nanotubes

  • Prasantha R. Mudimela,
  • Mattia Scardamaglia,
  • Oriol González-León,
  • Nicolas Reckinger,
  • Rony Snyders,
  • Eduard Llobet,
  • Carla Bittencourt and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2014, 5, 910–918, doi:10.3762/bjnano.5.104

Graphical Abstract
  • based on nanomaterials have been developed to fabricate small and inexpensive gas sensors with high sensitivity and able to work at room temperature [1]. Among the possible active materials in gas sensing devices, good candidates are carbon nanotubes (CNTs), thanks to their intrinsic properties such as
  • very large surface area to volume ratio, high electron mobility, physico-chemical stability and high adsorption capability [2][3][4][5]. The use of CNTs as gas sensors was first proposed by Kong et al., who showed that a dramatic change in the electrical resistance of an individual single-walled
  • room temperature), prompt response, short recovery time and reasonable reversibility and stability [2][3][4][6]. A further advance in the development of CNT gas sensing devices was the use of vertically aligned CNTs (VA-CNTs). In this case the sensing device benefits from the unidirectional electrical
PDF
Album
Letter
Published 26 Jun 2014

An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

  • Elnaz Akbari,
  • Vijay K. Arora,
  • Aria Enzevaee,
  • Mohamad. T. Ahmadi,
  • Mehdi Saeidmanesh,
  • Mohsen Khaledian,
  • Hediyeh Karimi and
  • Rubiyah Yusof

Beilstein J. Nanotechnol. 2014, 5, 726–734, doi:10.3762/bjnano.5.85

Graphical Abstract
  • Teknologi Malaysia, Johor Bahru, Malaysia Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia 10.3762/bjnano.5.85 Abstract Carbon, in its variety of allotropes, especially graphene and carbon nanotubes (CNTs), holds great potential for
  • applications in variety of sensors because of dangling π-bonds that can react with chemical elements. In spite of their excellent features, carbon nanotubes (CNTs) and graphene have not been fully exploited in the development of the nanoelectronic industry mainly because of poor understanding of the band
  • wavelength of carriers. Novel applications [7][8][9] are possible by exploiting the quantum waves in operation of these low-dimensional devices. New materials are being discovered in building novel sensors that can operate on the nanometer scale. Examples of these include graphene and carbon nanotubes (CNTs
PDF
Album
Full Research Paper
Published 28 May 2014

Chemi- vs physisorption in the radical functionalization of single-walled carbon nanotubes under microwaves

  • Victor Mamane,
  • Guillaume Mercier,
  • Junidah Abdul Shukor,
  • Jérôme Gleize,
  • Aziz Azizan,
  • Yves Fort and
  • Brigitte Vigolo

Beilstein J. Nanotechnol. 2014, 5, 537–545, doi:10.3762/bjnano.5.63

Graphical Abstract
  • functionalization; grafting; microwaves; physisorption; Introduction Carbon nanotubes (CNTs) are recognized to have a huge potential in a variety of applications such as electronics, composite materials, energy storage and medicine [1][2][3][4]. From bulk synthesis method, CNTs are often entangled contingent upon
  • to the CNTs. It is recognized to be an efficient way to confer specific surface properties [5]. However, the methods generally used for the covalent functionalization of CNTs often require long reaction times (from several hours to days) [6]. The reaction times can be considerably reduced to a few
  • conjugated π system of CNTs thereby having a negative impact on their intrinsic properties (conductivity, mechanical properties) [23][24][25]. Low functionalization levels are indisputably preferred for CNT based composites [26]. As a consequence of the fast reaction times achieved under microwave heating, a
PDF
Album
Full Research Paper
Published 29 Apr 2014

A catechol biosensor based on electrospun carbon nanofibers

  • Dawei Li,
  • Zengyuan Pang,
  • Xiaodong Chen,
  • Lei Luo,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2014, 5, 346–354, doi:10.3762/bjnano.5.39

Graphical Abstract
  • calibration curve of the current response on the catechol concentration. It can be seen that the response current increased with the increase in catechol concentration. The linear range was 1–1310 µM (R = 0.998, n = 19), which was much wider than for the biosensor based on CNTs and laccase [33]. And the
PDF
Album
Full Research Paper
Published 24 Mar 2014

Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

  • Kang Xia,
  • Haifei Zhan,
  • Ye Wei and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 329–336, doi:10.3762/bjnano.5.37

Graphical Abstract
  • GNHS with 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.5% of N- dopants fracture at either the right or the left end of the structure. The atomic configurations of the GNHS with 2% of N-dopants are presented in Figure 4a-d. Before the initiation of failure, a shearing of the CNTs and an elongation of bonds are
  • configurations of the case with 0.75%B and 0.75%N at different strains. Surprisingly, the hybrid structure is found to fracture around four CNTs. After failure, the upper layer is found to break at the outermost two CNTs at the right end, while the lower layer fractures at the second outermost two CNTs. Such
  • failure of the hybrid structure around the middle region is also witnessed. As shown in Figure 8f, the top and bottom layers of GNHS-1.5%N1.5%B fracture simultaneously around the two connecting CNTs. In all investigated cases, the self-adhesive behavior between the dangling layers and the bulked
PDF
Album
Full Research Paper
Published 20 Mar 2014

Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

  • Nuri Yazdani,
  • Vipin Chawla,
  • Eve Edwards,
  • Vanessa Wood,
  • Hyung Gyu Park and
  • Ivo Utke

Beilstein J. Nanotechnol. 2014, 5, 234–244, doi:10.3762/bjnano.5.25

Graphical Abstract
  • guidelines; titania, TiO2; Introduction Recent advances in the synthesis and processing of carbon nanotubes (CNTs) have enabled the prospect of their integration into existing technologies that exploit the high surface area of mesoporous ceramic films [1]. Over the last 10 years, ceramic coated CNTs have
  • ceramic coating of the CNTs. Atomic layer deposition (ALD) is a highly attractive option for coating CNTs because it enables a wide range of ceramics and metals to be deposited conformally on arbitrary surface topologies with precise control of layer thickness [1][18]. However, vertically aligned CNT
  • functionalization [19][20][21][22][23][24]. In practice, however, chemical vapor deposition (CVD) grown CNTs are prone to a sufficient density of surface defect sites to allow for the nucleation of the ceramic at discrete points along the surface of the CNT. The ceramic then grows from these nucleation sites until
PDF
Album
Full Research Paper
Published 05 Mar 2014

En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

  • Slawomir Boncel,
  • Sebastian W. Pattinson,
  • Valérie Geiser,
  • Milo S. P. Shaffer and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2014, 5, 219–233, doi:10.3762/bjnano.5.24

Graphical Abstract
  • nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of
  • key parameters, i.e., growth temperature (660, 760 and 860 °C), composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to
  • the growth rate of multi-wall CNTs (MWCNTs). As revealed by electron microscopy studies (SEM, TEM), the individual N-CNTs (half as thick as MWCNTs) grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2014

Synthesis of boron nitride nanotubes from unprocessed colemanite

  • Saban Kalay,
  • Zehra Yilmaz and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2013, 4, 843–851, doi:10.3762/bjnano.4.95

Graphical Abstract
  • used to synthesize boron nitride nanotubes (BNNT)s [3][4]. BNNTs, structural analogoues of carbon nanotube (CNT)s, have superior properties than CNTs due to their robust structure which resists high temperatures and harsh chemical conditions. They also have a high hydrogen storage capacity due to the
  • ionic nature of the B–N bond [5]. In contrast to CNTs, the BNNTs have a constant and wide band-gap of 5.5 eV. Therefore, they are electrical isolators independent from their size or chirality. In recent studies, it has been indicated that the hydrogen storage capacity of BNNTs is two times greater than
  • that of CNTs [6]. It has been theoretically demonstrated that BNNTs can capture ions selectively creating superhydrophobic surfaces [7][8]. Since hexagonal boron nitrides (h-BNs) have a sp2 hybridization, the BNNTs can interact with polymers possessing aromatic rings via π-π interaction. Therefore, the
PDF
Album
Full Research Paper
Published 04 Dec 2013

Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory

  • Mir Masoud Seyyed Fakhrabadi,
  • Abbas Rastgoo and
  • Mohammad Taghi Ahmadian

Beilstein J. Nanotechnol. 2013, 4, 771–780, doi:10.3762/bjnano.4.88

Graphical Abstract
  • and structures made from different metallic and non-metallic materials, carbon nanomaterials play a special role. For instance, carbon nanotubes (CNTs) possess extraordinary chemical, physical, mechanical and electrical properties. Thus, since their discovery in 1991 by Iijima [13], they have
  • attracted a lot of scientists and researchers all over the world to study their characteristics as well as their actual and potential applications. A mathematical formulation of the applicability of CNTs in NEMS was conducted by Dequesnes et al. [14]. They applied a model with one degree of freedom in order
  • to study the manipulation of CNTs by using electrostatic actuation and vdW interactions. The results revealed that the vdW force played an important role in the deflection and pull-in behaviors of the CNTs. In electrostatic actuation, a voltage is applied to two electrodes with a gap in-between. In
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2013
Other Beilstein-Institut Open Science Activities