Search results

Search for "Si substrate" in Full Text gives 203 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • role, the mechanism involved in such an interaction was concerned with the specific p–d orbital coupling between the localized Si substrate pz states on the B-passivated Si(111) surface and the metal atom at the center of the flat laying phthalocyanine molecule. This type of mechanism is not applicable
PDF
Album
Full Research Paper
Published 11 Jan 2017

Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

  • Felix Pyatkov,
  • Svetlana Khasminskaya,
  • Vadim Kovalyuk,
  • Frank Hennrich,
  • Manfred M. Kappes,
  • Gregory N. Goltsman,
  • Wolfram H. P. Pernice and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2017, 8, 38–44, doi:10.3762/bjnano.8.5

Graphical Abstract
  • electron beam lithography on top of Si3N4/SiO2/Si substrate. Au/Cr contacts were produced by physical vapor deposition, and 600 nm wide, half-etched Si3N4-waveguides were formed with reactive ion etching. A typical sample contains tens of contact pairs and CNTs that were placed in between using
PDF
Album
Full Research Paper
Published 05 Jan 2017

Annealing-induced recovery of indents in thin Au(Fe) bilayer films

  • Anna Kosinova,
  • Ruth Schwaiger,
  • Leonid Klinger and
  • Eugen Rabkin

Beilstein J. Nanotechnol. 2016, 7, 2088–2099, doi:10.3762/bjnano.7.199

Graphical Abstract
  • temperature range of 250–450 °C [3]. It should be noted that in all three works [1][2][3] the maximum indentation depth was larger than the metal film thickness, which resulted in significant modification of the Si substrate. Still, the microscopic mechanisms responsible for redistribution of matter in the
PDF
Album
Full Research Paper
Published 28 Dec 2016

Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: a comparative study

  • Veronique Dupuis,
  • Anthony Robert,
  • Arnaud Hillion,
  • Ghassan Khadra,
  • Nils Blanc,
  • Damien Le Roy,
  • Florent Tournus,
  • Clement Albin,
  • Olivier Boisron and
  • Alexandre Tamion

Beilstein J. Nanotechnol. 2016, 7, 1850–1860, doi:10.3762/bjnano.7.177

Graphical Abstract
  • between low signal from the Si substrate and maximum intensity of the Bragg (110) peak. The Figure 7 shows the measured X-ray scattering where we can see three peaks which correspond to the main Bragg peaks common to the B2 and bcc structures. These three peaks, showing the very good crystallinity of the
PDF
Album
Full Research Paper
Published 28 Nov 2016

Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface

  • Ilya A. Milekhin,
  • Sergei A. Kuznetsov,
  • Ekaterina E. Rodyakina,
  • Alexander G. Milekhin,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2016, 7, 1519–1526, doi:10.3762/bjnano.7.145

Graphical Abstract
  • coupling also depends on the dielectric function of a surrounding medium that makes the LSPR energy different for nanoantennas backed by a bare Si substrate and when a SiO2 sublayer is introduced beneath the nanoantennas. Figure 4 illustrates the relation between the LSPR frequency and the SiO2 layer
  • thickness derived from the IR spectra of nanoantennas with the underlying SiO2 layer created on top of the Si substrate. It can be seen from Figure 4 that the LSPR frequency of the nanoantennas fabricated on a thick SiO2 layer is blue-shifted by about 1000 cm−1 with respect to the structures on bare Si due
  • 1900 nm (a,b) and 1400 nm (c,d) fabricated on SiO2 layers of different thicknesses measured at normal incidence. The IR transmission spectrum of a 49 nm thick SiO2 layer on a Si substrate measured at off-normal (70°) incidence is shown for comparison. The vertical dashed lines indicate the frequency
PDF
Album
Full Research Paper
Published 26 Oct 2016

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • the n-Si substrate was grounded. In this configuration, the bias voltage is applied across the series combination of junctions, namely at the ITO/Ge:SiO2 interface, the Ge:SiO2 film region, and the junction situated at Ge:SiO2/Si interface [34]. The rectifying behavior (102 rectification ratio at 1 V
  • as a result of the separation of electron–hole pairs generated in the Ge-nps and the Si substrate. The obtained photoresponse gain factor increases from about 102 (at 300 °C) to about 103 (at 500 °C) with the temperature increase during deposition. Under illumination, electrons and holes are
  • generated in the Ge-nps and in the Si substrate and they move by tunneling between neighboring Ge-nps. During transport, the positively charged holes are dynamically trapped within the Ge-nps incorporated into SiO2 matrix improving the electron injection, leading to an increase of negative photoconductivity
PDF
Album
Full Research Paper
Published 21 Oct 2016

NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

  • Li-Yang Hong and
  • Heh-Nan Lin

Beilstein J. Nanotechnol. 2016, 7, 1044–1051, doi:10.3762/bjnano.7.97

Graphical Abstract
  • nanolithography [30][32] procedure is shown in Figure 1. A 40 nm thick poly(methylmethacrylate) (PMMA) film was spin-coated on a Si substrate that had a thick oxide layer. By using an AFM (Smena, NT-MDT, Russia), a straight nanogroove was generated in the PMMA film. A Ti film was deposited by electron-beam
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
PDF
Album
Full Research Paper
Published 24 May 2016

Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

  • Benjamin Pollard and
  • Markus B. Raschke

Beilstein J. Nanotechnol. 2016, 7, 605–612, doi:10.3762/bjnano.7.53

Graphical Abstract
  • interface, as PMMA is more polar than PS and tends toward the polar SiO2 native oxide layer of the Si substrate [17]. Models suggest that this PS surface layer is roughly half the microdomain size when in equilibrium [18], though we can expect nonuniformity and local variations of the surface layer in this
PDF
Album
Full Research Paper
Published 22 Apr 2016

Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

  • Martin Schilling,
  • Paul Ziemann,
  • Zaoli Zhang,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2016, 7, 591–604, doi:10.3762/bjnano.7.52

Graphical Abstract
  • Figure 2a the RHEED pattern for a 3 nm Fe48Pt52 film on a SiO2/Si substrate is presented after post annealing at 650 °C for 30 min. A diffuse intensity distribution is observed without any superposed streaks or spots. The bright ring around the direct beam is a halo feature due to the RHEED arrangement
PDF
Album
Full Research Paper
Published 21 Apr 2016

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

  • Nik J. Walch,
  • Alexei Nabok,
  • Frank Davis and
  • Séamus P. J. Higson

Beilstein J. Nanotechnol. 2016, 7, 209–219, doi:10.3762/bjnano.7.19

Graphical Abstract
  • index (n) and extinction coefficient (k) of graphene films can be found by fitting the above spectra to the model using the dedicated software by J. A. Woollam. In this particular case, the model of the reflecting system consists of the following three layers: (1) Si substrate; (2) the layer of native
  • of data in Figure 9a, the fitting for the thickness of the native SiO2 layer was performed first using the data for the bare Si substrate. The thickness of SiO2 layer obtained (d = 3.2 nm) was then fixed for consecutive fittings. The PAH/graphene(−)SDS film was considered as one layer in the
PDF
Album
Full Research Paper
Published 08 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

  • Nina J. Blumenstein,
  • Caroline G. Hofmeister,
  • Peter Lindemann,
  • Cheng Huang,
  • Johannes Baier,
  • Andreas Leineweber,
  • Stefan Walheim,
  • Christof Wöll,
  • Thomas Schimmel and
  • Joachim Bill

Beilstein J. Nanotechnol. 2016, 7, 102–110, doi:10.3762/bjnano.7.12

Graphical Abstract
  • ), (002), (101), (102) and (110) reflections of hexagonal ZnO are visible in the XRD patterns (cf. JCPDS no. 01-079-0206). For the PS brush sample (Figure 4b), a pronounced preferred orientation of the ZnO crystallites with the hexagonal c-axis perpendicular to the plane of the Si substrate is indicated
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2016

Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

  • Alexander G. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Volodymyr M. Dzhagan,
  • Ovidiu D. Gordan,
  • Sergey L. Veber,
  • Cameliu Himcinschi,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2015, 6, 2388–2395, doi:10.3762/bjnano.6.245

Graphical Abstract
  • ]. The fabrication details of regular arrays of Au nanoclusters and dimers on a Si substrate are presented in [29]. In addition to regular arrays of Au nanoclusters, arrays of paired Au nanoclusters or dimers were fabricated by electron beam lithography on a Si substrate covered with 75 nm of SiO2. The
  • regular arrays of Au nanoclusters Typical SEM and HR-TEM images of a single monolayer of CdSe NCs deposited by the LB technique on the plasmonic substrate and on a carbon-coated Cu grid are shown in Figure 2. This demonstrates a dense, homogeneous coverage of the NCs for both the Si substrate with a Au
  • nanocluster array and the Cu grid. The Raman spectrum acquired from the area where CdSe NCs are deposited on the Si substrate reveals only features inherent to crystalline Si. However, the Raman spectra of CdSe NCs deposited on the nanocluster arrays (Figure 3a) reveal a pronounced peak at about 207.5 cm−1
PDF
Album
Full Research Paper
Published 14 Dec 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • conventionally or with a laser the flat morphology of square, line, or tip deposits on the pre-patterned SiO2/Si substrate changes (Figure 3 and Figure 4). While the laser allows for local heating, the conventional hotplate approach allows for more accurate temperature measurements. The visible onset of Cu
  • nanocrystal precipitation on the deposit surface starts at around 150 °C for the Cu(hfac)2 deposits on the pre-patterned SiO2/Si substrate. Further heating to about 200 °C for 30 min did not visibly change the appearance of the Cu nanocrystal precipitation. EDX analysis after conventional heating to 200 °C
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Magnetic properties of iron cluster/chromium matrix nanocomposites

  • Arne Fischer,
  • Robert Kruk,
  • Di Wang and
  • Horst Hahn

Beilstein J. Nanotechnol. 2015, 6, 1158–1163, doi:10.3762/bjnano.6.117

Graphical Abstract
  • mbar range during the deposition. Fex/Cr samples consist of the already mentioned Si substrate with a native oxide layer, a 10 nm Cr base layer, the Fe cluster/Cr matrix layer, a 10 nm Cr top layer and a 10 nm Au film as oxidation protection. This geometry makes sure that the Fe clusters are in contact
  • interactions) become dominant. Hysteresis loops were recorded at 5 K after field cooling from 350 K, which is above the TN of Cr (311 K [16]), in an external magnetic field of μ0H = 4.5 T. A linear diamagnetic background originating from the Si substrate as well as the Au layers was subtracted. The coercivity
PDF
Album
Letter
Published 13 May 2015

Fulleropeptide esters as potential self-assembled antioxidants

  • Mira S. Bjelaković,
  • Tatjana J. Kop,
  • Jelena Đorđević and
  • Dragana R. Milić

Beilstein J. Nanotechnol. 2015, 6, 1065–1071, doi:10.3762/bjnano.6.107

Graphical Abstract
  • mM) on a Si substrate at room temperature. The ester 1 arranged into a flower-shaped, hierarchically ordered architecture of curled leaf-like particles with diameters of up to 5 μm (Figure 3A) [25]. Figure 3B–F shows selected representative examples of SEM micrographs of typical fulleropeptide self
  • compound was dispersed on a brass substrate. The dried samples obtained from dilute solutions were prepared as follows: 10 μL of 1 mM solution in the PhMe/MeOH (5:1, v/v) mixture of fullerene derivatives was deposited on the surface of a Si substrate (10 × 10 mm) and left overnight to slowly evaporate in a
  • particles of 4 and 11. (E, F) Networks of spherical particles of 9 and 12, all prepared from 5:1 PhMe/MeOH (v/v) on a Si substrate after evaporation of a 1 mM solution. Scale bars correspond to 5 μm. Representatives of the SEM images of the self-organized rods of Fp–GABA ester 1 (A) and fulleropeptides self
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015

Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method

  • Alexander Samardak,
  • Margarita Anisimova,
  • Aleksei Samardak and
  • Alexey Ognev

Beilstein J. Nanotechnol. 2015, 6, 976–986, doi:10.3762/bjnano.6.101

Graphical Abstract
  • outer edges vary significantly. In the case of a monocrystalline Si substrate, the ring has a sharp edge with a small resist undercut (Figure 1a). As seen in Figure 1b, exposure of the resist on the polycrystalline Au film leads to a deep undercut and rough edges after development. The physics behind
  • emission is very broad and corresponds to the normalized energy, W = E/E0 = 0.5, where E and E0 are the energy of backscattered and primary electrons, respectively. For Au, W = 0.95–0.98. As a result, in the case of the Au substrate, the rings have a much smaller outer diameter compared to the Si substrate
  • (Figure 3). Even at a dose of 2.5 pC, the ring on the Au substrate is still smaller than that patterned onto the Si substrate at a dose 0.35 pC. Our experimental findings are supported by Monte Carlo simulations performed with NanoPECS software [17]. In the case of the Si substrate, most of the electrons
PDF
Album
Full Research Paper
Published 17 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • pre-cleaned 100 nm thermal SiO2 on Si substrate and then purified. The deposition and subsequent purification was performed using a FEI NOVA 600 dual-beam system equipped with FEI and Omniprobe gas injection systems. Prior to deposition, the substrate was sonicated in isopropanol for 5 min and
PDF
Album
Full Research Paper
Published 08 Apr 2015

Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

  • Alexander G. Milekhin,
  • Nikolay A. Yeryukov,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Victor A. Gridchin,
  • Evgeniya S. Sheremet and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2015, 6, 749–754, doi:10.3762/bjnano.6.77

Graphical Abstract
  • SEM image of the edge of a periodic Au nanocluster array on a Si substrate with deposited CuS NCs is presented in Figure 4a. One can see that the CuS NCs are homogeneously distributed on the Au nanocluster array and on the bare Si surface with an average thickness of about 1 ML. The Raman spectrum
  • measured from the area where CuS NCs are formed on bare Si (lower part in Figure 4a) shows only one strong Raman line at 521 cm−1 related to the Si substrate (lower curve in Figure 4b). Weak Raman features located in the spectral range of 400–500 cm−1 are also typical for monocrystalline Si [21] while no
  • , CuS NCs were deposited on arrays of Au nanoclusters fabricated using nanolithography on a 75 nm thick SiO2 layer. Obviously, the LSPR energy of the Au nanocluster arrays fabricated on a SiO2 layer and on a Si substrate can be different due to the difference of dielectric functions of SiO2 and Si [22
PDF
Album
Full Research Paper
Published 17 Mar 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • work [17], the lattice and thermal mismatches between ZnO and a Si substrate are 15 and 60%, respectively. PET and glass substrates are amorphous, and are thus expected to result in even larger lattice and thermal mismatching with ZnO than for the Si substrate [18]. In the current study, the lattice
  • -induced scattering [22]. Also, other highly intense peaks were detected in sample (b) in the region 600–890 cm−1 characteristic of the PET substrate (sub), which also can be seen in sample (a) for glass substrate (sub), yet it was not detected for the Si substrate. Conclusion Single-crystal ZnO nanorod
PDF
Album
Full Research Paper
Published 12 Mar 2015

Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

  • Carla Aramo,
  • Antonio Ambrosio,
  • Michelangelo Ambrosio,
  • Maurizio Boscardin,
  • Paola Castrucci,
  • Michele Crivellari,
  • Marco Cilmo,
  • Maurizio De Crescenzi,
  • Francesco De Nicola,
  • Emanuele Fiandrini,
  • Valentina Grossi,
  • Pasqualino Maddalena,
  • Maurizio Passacantando,
  • Sandro Santucci,
  • Manuela Scarselli and
  • Antonio Valentini

Beilstein J. Nanotechnol. 2015, 6, 704–710, doi:10.3762/bjnano.6.71

Graphical Abstract
  • obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD) technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction
  • . Conclusion In this paper, we report the results of a negative differential resistance behavior generated by the incident radiation, which varies as a function of wavelength and incident power intensity for a new photosensitive device consisting of MWCNTs grown at 700 °C on a Si substrate. The junction
  • still under investigation, suggest the potential use of the device for optoelectronics applications. (a) Schematic front view and (b) side view of the Si substrate produced by Fondazione Bruno Kessler (FBK) in Povo, Trento (Italy). (a) Scanning electron microscopy (SEM) image of MWCNT samples grown on
PDF
Album
Full Research Paper
Published 10 Mar 2015

Simple approach for the fabrication of PEDOT-coated Si nanowires

  • Mingxuan Zhu,
  • Marielle Eyraud,
  • Judikael Le Rouzo,
  • Nadia Ait Ahmed,
  • Florence Boulc’h,
  • Claude Alfonso,
  • Philippe Knauth and
  • François Flory

Beilstein J. Nanotechnol. 2015, 6, 640–650, doi:10.3762/bjnano.6.65

Graphical Abstract
  • transmission electron microcopies, energy-dispersive X-ray analysis, and IR spectroscopy. Results and Discussion Effect of tapering on SiNW antireflection The SiNWs, as prepared from an n-type Si substrate according to the process described in the Experimental section, can be seen in Figure 1. The geometry of
  • . The chosen experimental conditions resulted in a dense array of smooth Si nanowires, 2 µm in length, approximately 100 nm thick, and oriented perpendicular to the Si substrate. In this case, the space between the wires was quite small. TEM observation of the nanowires allows the dimensions to be
  • -type Si substrate conductive in the anodic area. The deposition was controlled by a Solartron SI 1287 with a computer running CorrWare software. A non-aqueous medium was preferred over the classical sodium polystyrene sulfonate (NaPSS) aqueous environment in order to avoid the important silicon
PDF
Album
Full Research Paper
Published 04 Mar 2015

Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

  • Christian Godet

Beilstein J. Nanotechnol. 2015, 6, 583–594, doi:10.3762/bjnano.6.60

Graphical Abstract
  • thickness (spectroscopic ellipsometry, SE), molecular packing density and possible interface oxidation of the Si substrate (X-ray photoelectron spectroscopy). The surface density of acid groups (0.4 × 1014 cm−2) and the total organic layer (acid + alkyl) coverage (2.6 × 1014 cm−2) were obtained by XPS using
PDF
Album
Full Research Paper
Published 26 Feb 2015

Electrical properties of single CdTe nanowires

  • Elena Matei,
  • Camelia Florica,
  • Andreea Costas,
  • María Eugenia Toimil-Molares and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2015, 6, 444–450, doi:10.3762/bjnano.6.45

Graphical Abstract
  • transport through the nanowire, a third electrical contact was made to the n++ Si substrate. A comparison of the transport properties of the nanowires with and without a passivated thin layer of PMMA was performed. This polymer passivation layer was deposited onto the wire by means of spin coating. SEM
PDF
Album
Full Research Paper
Published 12 Feb 2015
Other Beilstein-Institut Open Science Activities