Search results

Search for "cancer cells" in Full Text gives 148 result(s) in Beilstein Journal of Nanotechnology.

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • cancer cells were treated and monitored under a fluorescence microscope at 405 nm excitation. Intense green fluorescence was observed from cancer cells which confirmed the internalization of NPs. Similarly, Pinho et al. [15] reported the synthesis of a bimodal MRI probe by embedding two lanthanide metal
  • cytometry, confocal microscopy and MRI studies suggested that the prepared nanocomposites can be used for targeting cancer cells that overexpress folic acid. Similar strategies were also used by Peng et al. [22] by using an iridium(III) complex as fluorescent agent. Hu et al. [23] reported the synthesis of
  • silica-encapsulated hydrophobic Mn3O4 NPs in which the silica surface was further modified by fluorescent rhodamine B and aptamer (AS411) as a targeting ligand. The in vitro confocal imaging and in vivo MRI studies showed that NPs specifically targeted the cancer cells. The histopathological and
PDF
Album
Review
Published 24 Feb 2015

Nanoparticle shapes by using Wulff constructions and first-principles calculations

  • Georgios D. Barmparis,
  • Zbigniew Lodziana,
  • Nuria Lopez and
  • Ioannis N. Remediakis

Beilstein J. Nanotechnol. 2015, 6, 361–368, doi:10.3762/bjnano.6.35

Graphical Abstract
  • daily basis. Nowadays, nanoparticles can be found in sensors, especially with biomedical interest, as agents to induce the death of cancer cells, as drug delivery vehicles, in emerging energy technologies, either in harvesting or for storage, as additives for fuels, in optics, and as part of smart
PDF
Album
Review
Published 03 Feb 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • models following exposure with silica nanoparticles (SiO2-NP) [12][13][14]. Inorganic SiO2-NP hold great potential for several biomedical applications, including the selective targeting of cancer cells as well as drug or gene delivery systems due to their favorable biocompatibility and modification
  • deposits in HE-stained sections of glioblastomas (Figure 1a), a common brain tumor with high clinical relevance [45]. Such particles have similarly been visualized after targeting prostate cancer cells in humans [46]. Iron oxide nanoparticles have been introduced as diagnostic tool or for the treatment of
  • of cancer cells as well as drug or gene delivery systems due to their favorable biocompatibility and modification possibilities [15][16]. However, labeling of NP always possesses the risk of changing their bioreactivity [20]. Thus, the site of labeling and the properties of the fluorochrome may have
PDF
Album
Review
Published 23 Jan 2015

Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

  • Nils Bohmer and
  • Andreas Jordan

Beilstein J. Nanotechnol. 2015, 6, 167–176, doi:10.3762/bjnano.6.16

Graphical Abstract
  • , nanoparticles were mostly found in macrophages than in the cancer cells themselves [25]. In the respective study it was not crucial for successful treatment that the nanoparticles were specifically taken up by the tumor cells, because they were injected directly into the tumor and had no further payload
  • attached to the surface. But for drug delivery applications and intravenous injections it would be very useful to understand, how cancer cells internalize iron oxide nanoparticles and which pathways are involved. Insights in the principles of nanoparticle endocytosis would be very helpful to develop
  • the internalization behavior of HeLa cells in vitro. Discussion The aim of the study was to elucidate, how human cancer cells internalize iron oxide nanoparticles with silica shells, which have no target function for a special application or receptor. Therefore the human cervical cancer cell line HeLa
PDF
Album
Full Research Paper
Published 14 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • composites in the presence and absence of a magnetic field [84]. The BNNT–NaGdF4:Eu composites simultaneously show fluorescent and magnetic properties. Thus, imaging and targeting of the composites can be more easily achieved. Human LNCaP prostate cancer cells were treated with the BNNT–NaGdF4:Eu composites
  • in the presence and absence of a magnetic field and higher cell-associated uptake was found in the presence of a magnetic field. Then, the composites were loaded with doxorubicin (dox) to investigate the viability of LNCaP prostate cancer cells in the magnetic field. It was found that dox-loaded BNNT
  • pH dependent and both negatively and positively charged structures had the same dox loading capacity. The BNNT–MS–NH2 had higher uptake potential in LNCaP prostate cancer cells due to its charge. Thus, it had a higher toxicity towards LNCaP prostate cancer cells. It was concluded that the prepared
PDF
Album
Review
Published 08 Jan 2015

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • largely used as drug delivery vehicles, showing potential in targeting specific cancer cells [18] with a necessary dosage lower than conventional drugs, without harming healthy cells and significantly reduced side effects. Another interesting property of carbon nanotubes is their antioxidant activity
PDF
Album
Full Research Paper
Published 02 Dec 2014

Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme

  • Yasuhiko Onishi,
  • Yuki Eshita,
  • Rui-Cheng Ji,
  • Masayasu Onishi,
  • Takashi Kobayashi,
  • Masaaki Mizuno,
  • Jun Yoshida and
  • Naoji Kubota

Beilstein J. Nanotechnol. 2014, 5, 2293–2307, doi:10.3762/bjnano.5.238

Graphical Abstract
  • complex that was used as an artificial enzyme against multi-drug-resistant cancer cells was confirmed. A complex of diethylaminoethyl–dextran–methacrylic acid methylester copolymer (DDMC)/paclitaxel (PTX), obtained with PTX as the guest and DDMC as the host, formed a nanoparticle 50–300 nm in size. This
  • cancer cells; paclitaxel; supramolecular complex; Review Introduction As a means of delivering a drug to a target effectively, the enhanced permeation and retention (EPR) effect and reticuloendothelial system (RES) were enabled by using a polymer drug delivery system (DDS), and it is thought to
  • revealed the activation of several genes downstream of EGR1 and TXNIP. Six hours after administration, CYR61, which is involved in resistance to PTX in breast cancer, became more active and continued to be influenced by EGR1. In this way, cancer cells exposed to anticancer drugs acquire resistance to the
PDF
Album
Review
Published 01 Dec 2014

Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells

  • Claudia Strobel,
  • Martin Förster and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2014, 5, 1795–1807, doi:10.3762/bjnano.5.190

Graphical Abstract
  • nanoparticles were also found to be cytotoxic in other cell types, such as human bronchial epithelial cells [25][27] or human lung cancer cells [26]. The extent of the adverse effects of CeO2 nanoparticles on cells seems to be cell type-dependent. This applies also for subsets of endothelial cells which have
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2014

Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

  • Adriano A. Torrano and
  • Christoph Bräuchle

Beilstein J. Nanotechnol. 2014, 5, 1616–1624, doi:10.3762/bjnano.5.173

Graphical Abstract
  • . In this section, we want to present in detail how Particle_in_Cell-3D was used to study the cell type-dependent uptake of 310 nm silica nanoparticles into human vascular endothelial cells (HUVEC) and cancer cells derived from the cervix carcinoma (HeLa). The nanoparticle uptake by single cells was
PDF
Album
Full Research Paper
Published 23 Sep 2014

Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

  • Anastasios Stergiou,
  • Georgia Pagona and
  • Nikos Tagmatarchis

Beilstein J. Nanotechnol. 2014, 5, 1580–1589, doi:10.3762/bjnano.5.170

Graphical Abstract
  • demonstrates the usage of a GO–coumarin conjugate as an activated fluorescent imaging probe with high sensitivity in the visualization of cancer cells [54]. The fluorescence of the probe can be switched off or on during intracellular imaging. Normally, the probe shows no or weak fluorescence (off) due to the
PDF
Album
Review
Published 18 Sep 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • . Scheme depicting the different mechanisms of cellular endocytosis. Reproduced with permission from [41]. Copyright (2011) Elsevier. Fluorescence microscopy image showing the granular structure of internalized NPs inside A549 lung cancer cells (two types of iron oxide NPs with different surface chemistry
PDF
Album
Review
Published 09 Sep 2014

Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

  • Dickson Joseph,
  • Nisha Tyagi,
  • Christian Geckeler and
  • Kurt E.Geckeler

Beilstein J. Nanotechnol. 2014, 5, 1452–1462, doi:10.3762/bjnano.5.158

Graphical Abstract
  • studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged
  • targeted drug and gene delivery [29][30][31]. Hence, MTT assays were used to study the cell viabilities of fibroblasts and cancer cells after treatment with AuNPs to check the cytotoxicity and the anticancer properties of the AuNPs for their future biomedical applications. Results and Discussion Synthesis
  • prepared AuNPs as an effective anticancer agent, MTT assays were performed against three different cancer cells lines (human colorectal cancer cells (HCT116), human cervical cancer cells (HeLa) and squamous carcinoma cells (SCC-7)) by treating them with AuNPs. The results are shown in Figure 4B, 4C and 4D
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2014

PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

  • Paula M. Castillo,
  • Mario de la Mata,
  • Maria F. Casula,
  • José A. Sánchez-Alcázar and
  • Ana P. Zaderenko

Beilstein J. Nanotechnol. 2014, 5, 1312–1319, doi:10.3762/bjnano.5.144

Graphical Abstract
  • promising as delivery systems due to their low toxicity and their ability to be used both in cancer diagnosis and therapy [21][22][23]. SPION can be effectively used as contrast agents for magnetic resonance imaging [24][25], as carriers for chemotherapeutic drugs [26][27][28] and to destroy cancer cells by
PDF
Album
Supp Info
Letter
Published 19 Aug 2014

Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

  • Amanee D Salaam,
  • Patrick Hwang,
  • Roberus McIntosh,
  • Hadiyah N Green,
  • Ho-Wook Jun and
  • Derrick Dean

Beilstein J. Nanotechnol. 2014, 5, 937–945, doi:10.3762/bjnano.5.107

Graphical Abstract
  • collagens, laminins, E-cadherin, and matrix metalloproteinase 1 [31]. α2β1 integrins have been proven to be up-regulated in bone metastatic prostate cancer cells [32][33]. Particularly, PC3 human bone metastatic prostate cancer cell lines have the highest expression of α2β1 integrins when compared to other
  • metastatic cell lines CWR-22 and LNCaP [31]. The over-expression of α2β1 integrins in PC3 can be harnessed as a target for a drug delivery platform. The toxicity of DOX can be decreased by increasing the interaction between the drug and cancer cells. Since α2β1 integrins are over-expressed in bone metastatic
  • prostate cancers, targeted drug delivery with a ligand that interacts with these integrins should allow for increased accumulation of drug systems in cancer cells versus normal cells or tissues. Asp–Gly–Glu–Ala (DGEA) peptide has been identified as a binding peptide for the α2β1 integrins; it corresponds
PDF
Album
Full Research Paper
Published 01 Jul 2014

Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications

  • Li-wei Liu,
  • Si-yi Hu,
  • Ying Pan,
  • Jia-qi Zhang,
  • Yue-shu Feng and
  • Xi-he Zhang

Beilstein J. Nanotechnol. 2014, 5, 919–926, doi:10.3762/bjnano.5.105

Graphical Abstract
  • optical probes for various immunoassays, multiplex imaging of cancer cells, and in vivo cancer targeting and imaging studies, etc. In 1998, Nie and Alivisatos were the first to report on the potential applications of QDs in biology [8][9]. There is no doubt that QDs offer a new tool for the multiplexed
PDF
Album
Full Research Paper
Published 27 Jun 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • in the overall cell viability. We also demonstrate the use of the functionalized gold nanorods as scattering probes for dark-field imaging of cancer cells thereby demonstrating their biocompatibility. Our results offer a unique solution for the future development of safe scattering color probes for
  • clinical applications such as the long term imaging of cells and tissues. Keywords: cancer cells; dark-field imaging; gold nanorods; PEG-SH; PEO–PPO–PEO; Introduction Gold nanorods (AuNRs) have been widely adopted for biological applications due to their unique plasmonic properties. One of the most
  • or PEO–PPO–PEO molecules produces biocompatible AuNRs formulations. These formulations lead to stable colloidal solutions and can be readily used for dark-field imaging of cancer cells. We believe that this work provides useful insight for developing new protocols for preparing biocompatible AuNRs
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

The softening of human bladder cancer cells happens at an early stage of the malignancy process

  • Jorge R. Ramos,
  • Joanna Pabijan,
  • Ricardo Garcia and
  • Malgorzata Lekka

Beilstein J. Nanotechnol. 2014, 5, 447–457, doi:10.3762/bjnano.5.52

Graphical Abstract
  • are stiffer (higher Young’s modulus) than cancerous cells (HTB-9, HT1376, and T24 cell lines). However, independently of the histological grade of the studied bladder cancer cells, all cancerous cells possess a similar level of the deformability of about a few kilopascals, significantly lower than non
  • filaments; atomic force microscopy (AFM); bladder cells; cytoskeleton; elastic properties of cells; malignancy degree of cancer cells; Introduction During oncogenic progression, many cancer-related alterations change both the internal structures of cells and also their surroundings, i.e., the extracellular
  • invasion. The relation between the stiffness of cancer cells and the 2D-organization of the actin cytoskeleton has been reported for breast [3], thyroid [11] and ovarian [21] cancers. For stiffer cells, the actin filaments distribution usually revealed two types of filament organization, i.e., an actin
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • –45 °C) needed for killing cancer cells. More importantly, IR820 has improved in vitro and in vivo stability compared to ICG. The in vitro IR820 degradation half-time is about twice that of ICG. In vivo, the plasma distribution half-life of IR820 is about 15 min, which is 5 times that of ICG; with an
  • also reported to induce mRNA accumulation for heat shock protein 70 (HSP70) [20], which is able to minimize the effect of heat on cells during heat exposure by inducing cells’ thermotolerance [21][22]. Our previous study investigated the effect of HT on cancer cells in a thermal dose-dependent manner
  • IR820-PGMD NPs within cancer cells will not activate ROS production and trigger HIF-1 and VEGF expression. Whereas slow and long-term incubator HT, with high thermal dose, will activate ROS production and result in the promotion of HIF-1 and VEGF expression. The study of cell killing and the cellular
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014

Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

  • Shadab Ali Khan,
  • Sanjay Gambhir and
  • Absar Ahmad

Beilstein J. Nanotechnol. 2014, 5, 249–257, doi:10.3762/bjnano.5.27

Graphical Abstract
  • render it more potent in killing tumor/cancer cells. We believe that this work could pave the way for nanosized drug delivery applications for the treatment of cancer. UV–vis spectrum of biosynthesized gadolinium oxide nanoparticles solution after 96 h of reaction with the fungal biomass. (A) TEM
PDF
Album
Full Research Paper
Published 07 Mar 2014

Growth behaviour and mechanical properties of PLL/HA multilayer films studied by AFM

  • Cagri Üzüm,
  • Johannes Hellwig,
  • Narayanan Madaboosi,
  • Dmitry Volodkin and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2012, 3, 778–788, doi:10.3762/bjnano.3.87

Graphical Abstract
  • . Therefore, scanning- or colloidal-probe atomic force microscopy have been widely used for studying the topography and the mechanical properties of PEMs [3][4][5][7][8]. One of the first measurements of elastic modulus with atomic force microscopy (AFM) on biological films was performed on lung-cancer cells
  • , back in 1993 [9]. Further measurements include different strains of E. coli with a colloidal probe [10], elastic modulus of human platelet cells [11], human bone cell or skeletal muscle cells [12], breast cancer cells [13][14], hydrogel films [15][16][17], or nanoribbons [18], as well as single
  • similar multilayers [4][5][23][32], crosslinked PDMS films [47], human platelets [48], agar gel [49] and cancer cells [13][14]. From 100 nm/s to 6000 nm/s, τ1 continuously decreases from 2.17 s to 0.18 s and τ2 decreases from 9.03 s to 1.20 s. This decrease means that the film is less viscous when it is
PDF
Album
Full Research Paper
Published 21 Nov 2012

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • treatment, nanoparticles are either functionalized with biomolecules that recognize and attach to the cancer cells, [6][7] or in the case of iron-oxide nanoparticles, the nanoparticles are directed by an external magnetic field [9]. The cells are destroyed by drugs that coat the nanoparticles or by
  • increasing the temperature of the nanoparticles to which cancer cells are susceptible. Figure 1a shows a nanoparticle loaded with a therapeutic drug and functionalized with a biomolecule (ligand), which selectively attaches to receptors in the cancer cell. The drug is then released as the nanoparticle
  • applications in which friction forces are of concern in controlled manipulation and targeting mechanisms. (a) Schematic of drug-carrying nanoparticles targeting cancer cells and releasing their therapeutic payload resulting in death of the cancer cell. Reprinted by permission from Macmillan Publishers Ltd [8
PDF
Album
Full Research Paper
Published 15 Nov 2012

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • the payload of tumor-homing double-stable RAW264.7 cells; (2) Release of chemotherapeutic SN38 at the cancer site by means of the self-containing Tet-On Advanced system; (3) Provide localized magnetic hyperthermia to enhance the cancer treatment, both by killing cancer cells through magnetic heating
  • , severe side effects, such as life-threatening diarrhea and neutropenia, have been observed [14][15]. SN38 is a topoisomerase I inhibitor, and it has demonstrated 100- to 1000-fold more cytotoxicity against various cancer cells in vitro than CPT-11 [6]. Despite the excellent anticancer potential, SN38 has
  • prodrug to the tumor site, and, upon activation of a previously silenced gene with doxycycline, significantly increased survival in a murine pancreatic cancer model in mice was observed [28]. Hyperthermia uses heat to kill cancer cells [29]. Numerous clinical trials have demonstrated that the combination
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • the first-generation DMR device [14]. In these early experiments, CLIO nanoparticles were directly conjugated to monoclonal antibodies. More recently, the use of BOND-2 strategy has further advanced DMR profiling capabilities (Table 1). Cancer cells were targeted with CLIO nanoparticles via BOND-2. At
  • also produced results in a fraction of the time (<15 minutes). The DMR platform has since been shown to be adaptable to rapid multi-target detection, where putative cancer cells can be profiled for multiple biomarkers; DMR is ideally suited to this use since it can perform measurements on a few cells
  • accuracy for correctly diagnosing cancer cells as malignant (Figure 7d). These, in addition to other advanced refinements to DMR sensing, are currently being applied to clinical trials of cancer cell profiling. Conclusion DMR represents a powerful combination of several cutting-edge technologies, namely
PDF
Album
Review
Published 16 Dec 2010
Other Beilstein-Institut Open Science Activities