Search results

Search for "metal oxides" in Full Text gives 213 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • , wherein micro- and nanostructures assemble spontaneously by supramolecular interactions to form larger functional units [58]. This self-assembly of nanoparticles is very useful for various applications. In the surfactant-assisted ternary self-assembly of metal oxides with functionalized graphene sheets
  • , an anionic surfactant gets adsorbed on the surface of graphene sheets and helps in the dispersion of graphene sheets. Then, the surfactant micelles with graphene sheets bind with metal cations and hence act as building block for self-assembly of metal oxides. Finally metal oxides become crystallized
  • nanoparticles and accelerate the photocatalytic rate by introducing more reaction sites and promoting charge separation in semiconductors [115]. In water splitting reactions, generally noble metals (e.g., Pt, Rh) and some metal oxides (e.g., NiO) act as the cocatalyst and these are loaded on the surface of
PDF
Album
Review
Published 03 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • insulating material. The capacitance is determined by the dielectric permittivity (ε) and the thickness of the insulating layer. Currently, two types of dielectric materials are commonly employed in transistor design and construction, either inorganic metal oxides (such as Ta2O5, Al2O3, SiO2) or organic
PDF
Album
Review
Published 28 Jul 2017

Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime

  • Shende Rashmi Chandrabhan,
  • Velayudhanpillai Jayan,
  • Somendra Singh Parihar and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2017, 8, 1476–1483, doi:10.3762/bjnano.8.147

Graphical Abstract
  • tribological properties of nanolubricant based on metals [16], metal oxides [17][18], MoS2 [4][19], boron [20] and WS2 [21]. Among all the solid additives, 2D graphene is a promising material to improve the tribological performance because of its high surface area to volume ratio and excellent mechanical
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2017

Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles

  • Christoph Göbel,
  • Ottokar Klimm,
  • Florian Puchtler,
  • Sabine Rosenfeldt,
  • Stephan Förster and
  • Birgit Weber

Beilstein J. Nanotechnol. 2017, 8, 1318–1327, doi:10.3762/bjnano.8.133

Graphical Abstract
  • procedures for nanoparticles with size control (gold [6][7], metal oxides [8][9]) and/or shape control (gold and silver [10]) are already well known. The reduction of metal salts is very common for noble metals [11], while (fast) precipitation or inverse-micelle technique are often used for metal oxides
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • nanowires have been integrated into an electronic nose and successfully applied to discriminate between drinking and contaminated water. Keywords: chemical sensors; electronic nose; metal oxides; nanowires; Introduction Nanotechnology is the base for improving knowledge about materials and phenomena at
  • , since the ingestion of food not properly stored or treated is one of the most frequent reason of hospitalization [1]. Chemical sensors may play a pivotal role in all these applications. Metal oxides were the first to be commercialized as conductometric chemical sensors in form of thick films, and they
  • stability of the final devices. In order to prepare an array of sensors, different metal oxides have been studied, both conventional and new ones. We have investigated different preparation techniques and materials and we have compared their sensing properties towards two well-known and studied species (an
PDF
Album
Full Research Paper
Published 06 Jun 2017

Enhanced catalytic activity without the use of an external light source using microwave-synthesized CuO nanopetals

  • Govinda Lakhotiya,
  • Sonal Bajaj,
  • Arpan Kumar Nayak,
  • Debabrata Pradhan,
  • Pradip Tekade and
  • Abhimanyu Rana

Beilstein J. Nanotechnol. 2017, 8, 1167–1173, doi:10.3762/bjnano.8.118

Graphical Abstract
  • with the development of cost effective and ecologically friendly methods [2]. Metal oxides have attracted significant attention as a photocatalyst for the degradation of these pollutants [3][4][5][6]. Copper oxide (CuO) is one of the most efficient materials for the oxidation of the air pollutant
  • found to be less effective as compared to other metal oxides [8][9][10][11][12]. Thus, in order to enhance its photocatalytic activity, CuO can be used with hydrogen peroxide (H2O2) [12][13][14][15][16][17][18][19][20][21]. However, the degradation time of dyes is an important problem when using CuO as
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2017

BTEX detection with composites of ethylenevinyl acetate and nanostructured carbon

  • Santa Stepina,
  • Astrida Berzina,
  • Gita Sakale and
  • Maris Knite

Beilstein J. Nanotechnol. 2017, 8, 982–988, doi:10.3762/bjnano.8.100

Graphical Abstract
  • polymer-based nanostructured composite filled with electroconductive nanoparticles. Compared to gas sensors based on metal oxides this type of sensor ensures a much easier usage because polymer-based composites do not require high operating temperatures and work at room temperature. The gas-sensing
PDF
Album
Full Research Paper
Published 04 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
PDF
Album
Review
Published 24 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • precious metal [4] or metal oxide nanoparticles [5]. Also, introduction of suitable defects was shown to have a positive effect on gas adsorption and sensor properties of graphene [6]. Transition metal oxides constitute an important class of catalysts and photosensitizers. Apart from the very first and
PDF
Album
Full Research Paper
Published 07 Mar 2017
Graphical Abstract
  • research is focused on further improvement of the performance of sensors based on nanostructured metal oxides (including one-dimensional) [1][9][10][11]. Nevertheless, one of the most popular technologies for the fabrication of SnO2-based sensors is the thin-film technology. This is because of basic
PDF
Album
Full Research Paper
Published 27 Feb 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • battery performance [7][11]. In such a stratagem, nanostructured current collectors are generally prepared by carbonization of organics, electrochemical deposition with templates, and reduction of metal oxides, all of which are complicated and costly [7][11][12][13]. On the other hand, as a semiconductor
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 82–90, doi:10.3762/bjnano.8.9

Graphical Abstract
  • comparably good gas-sensing performance [21][22]. However, due to their high affinity toward HCs and low thermal stability, they are sometimes unstable and exhibit poor sensitivity [23][24]. In this context, metal oxides (MOx) have been proposed as promising active sensing layers because of their
PDF
Album
Full Research Paper
Published 10 Jan 2017

Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

  • Wojciech Szmyt,
  • Carlos Guerra and
  • Ivo Utke

Beilstein J. Nanotechnol. 2017, 8, 64–73, doi:10.3762/bjnano.8.7

Graphical Abstract
  • ] are undoubtedly the most popular high-aspect-ratio cylinder array systems. Moreover, there has been growing interest in nanocylinder systems composed of metals [4], and metal oxides [5][6] have become increasingly researched for their use as large-surface one-dimensional materials in a wide range of
PDF
Album
Full Research Paper
Published 09 Jan 2017

From iron coordination compounds to metal oxide nanoparticles

  • Mihail Iacob,
  • Carmen Racles,
  • Codrin Tugui,
  • George Stiubianu,
  • Adrian Bele,
  • Liviu Sacarescu,
  • Daniel Timpu and
  • Maria Cazacu

Beilstein J. Nanotechnol. 2016, 7, 2074–2087, doi:10.3762/bjnano.7.198

Graphical Abstract
  • presence of long chain stabilizing agents on the surface of the nanoparticles. The bands at 382–619 cm−1 are characteristic of the metal oxides [26]. A particular case is sample NPT3, containing iron/chromium mixed oxides, which are present in the IR spectrum. This is in addition to the bands
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

In situ formation of reduced graphene oxide structures in ceria by combined sol–gel and solvothermal processing

  • Jingxia Yang,
  • Johannes Ofner,
  • Bernhard Lendl and
  • Ulrich Schubert

Beilstein J. Nanotechnol. 2016, 7, 1815–1821, doi:10.3762/bjnano.7.174

Graphical Abstract
  • capacity. It is mostly used together with other components, such as noble metals or transition metal oxides, such as NiO or Co3O4, because synergistic effects improve the catalytic properties. Graphene-modified CeO2 greatly enhances the performance in electrochemical devices (supercapacitors, fuel cells or
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2016

Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

  • Wojciech Maziarz,
  • Anna Kusior and
  • Anita Trenczek-Zajac

Beilstein J. Nanotechnol. 2016, 7, 1718–1726, doi:10.3762/bjnano.7.164

Graphical Abstract
  • material for application as an acetone sensor. Keywords: acetone; flower-like 3D nanostructures; gas sensors; selectivity; titanium dioxide; Introduction The market for resistive-type gas sensors is dominated by materials developed on the base of thin or thick layers composed of polycrystalline metal
  • oxides. However, there is a new approach to sensor technology focusing on nanomaterials and nanostructures. It is expected that they will provide better parameters than those based on conventional materials. The nanostructures of different forms, i.e., nanowires, nanotubes, nanoflowers, have been shown
PDF
Album
Full Research Paper
Published 15 Nov 2016

Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra

  • Oriol Gonzalez,
  • Sergio Roso,
  • Xavier Vilanova and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2016, 7, 1507–1518, doi:10.3762/bjnano.7.144

Graphical Abstract
  • air [9][10][11][12]. However, the facts that metal oxides are known for their lack of selectivity and this, combined with their normally high operating temperatures, have prevented their integration as gas sensitive material in the tags of RFID sensing systems. However, there have been reports of gas
  • sensors using ultraviolet (UV) activated metal oxides [13][14][15][16]. These works employ UV light as an energy efficient alternative to heating for activating chemical reactions occurring at the surface of metal oxides during gas detection. This approach could significantly cut power consumption in
  • metal oxides and, therefore, help re-considering the suitability of these materials for integrating wireless sensors. Integrating gas sensors with UV LEDs would certainly increase the cost of production (LED and packaging). However, these extra costs could be kept at a fraction of those incurred when
PDF
Album
Full Research Paper
Published 25 Oct 2016

Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature

  • Qingxin Nie,
  • Zengyuan Pang,
  • Hangyi Lu,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2016, 7, 1312–1321, doi:10.3762/bjnano.7.122

Graphical Abstract
  • [15], acetone [16] and formaldehyde [17]. However, for most metal oxides, there is the drawback of a required high operation temperature, about 300 °C, which will increase the energy consumption [18]. Compared with metal oxides, sensors based on conducting polymers show low power consumption and can
PDF
Album
Full Research Paper
Published 19 Sep 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • , transition metal oxides are the focus of intensive efforts for LIB anode materials due to their remarkable specific capacity, low cost and environmental compatibility [6][7][8][9][10][11]. Manganese oxide (MnO) is a particularly good choice owing to its high theoretical specific capacity of 755 mAh g−1, low
PDF
Album
Full Research Paper
Published 14 Sep 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • development of materials from the group of polymer nanocomposites (PNCs), which are a combination of a polymer matrix with inorganic or hybrid nanoparticles. For the currently used types of inorganic fillers, inter alia, the following are included: SiO2 [1], metal oxides (TiO2, Al2O3, Bi2O3, Zn0, CaCO3) [2][3
PDF
Album
Full Research Paper
Published 05 Aug 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • conduction via the CNT. To date, numerous studies have been reported on the decoration of CNTs with metal oxides including TiO2 [7][8] and ZnO [9] for solar cell applications and SnO2 for gas sensors. Reports on the fabrication of an all carbon nanocomposite combining CNTs, graphene and carbon quantum dots
PDF
Album
Full Research Paper
Published 26 Jul 2016

NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

  • Li-Yang Hong and
  • Heh-Nan Lin

Beilstein J. Nanotechnol. 2016, 7, 1044–1051, doi:10.3762/bjnano.7.97

Graphical Abstract
  • with these reported results. Furthermore, it can be seen that the performances of metal oxides with Au are much better those of pure metal oxides, which is due to the plasmonic effect [18][20]. It is expected that the present ND sensors can be improved in a similar fashion, e.g., by creating Au
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2016

Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles

  • Jacek Wojnarowicz,
  • Roman Mukhovskyi,
  • Elzbieta Pietrzykowska,
  • Sylwia Kusnieruk,
  • Jan Mizeracki and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 721–732, doi:10.3762/bjnano.7.64

Graphical Abstract
  • [2]. It enables the use of nanomaterials for creating innovative products, devices and complex systems that employ the properties of materials on the nanoscale [3]. Current research of the applications of nanotechnology in optoelectronics focuses on the control of the physical properties of metal
  • oxides semiconductors. Zinc oxide (ZnO) is a II–VI semiconductor characterised by a wide band gap of 3.3 eV and a high exciton binding energy of circa 60 meV [4]. ZnO is used in optoelectronic devices, solar cells, data carriers, light emitting diodes (LEDs), gas sensors, thermoelectric devices
PDF
Album
Full Research Paper
Published 19 May 2016

Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

  • Saurav Kumar,
  • Sudeshna Bagchi,
  • Senthil Prasad,
  • Anupma Sharma,
  • Ritesh Kumar,
  • Rishemjit Kaur,
  • Jagvir Singh and
  • Amol P. Bhondekar

Beilstein J. Nanotechnol. 2016, 7, 501–510, doi:10.3762/bjnano.7.44

Graphical Abstract
  • biological activity after immobilization on solid supports and exhibits charge transport in thin films [8][14][15]. These properties have attracted researchers for the development of novel bio-hybrid devices [5][7][16][17][18][19]. Hybrids of bR protein with various metal/metal oxides (e.g., Au, Ag, TiO2
PDF
Album
Full Research Paper
Published 04 Apr 2016

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • conditions. For example, for transient electronics it has become a major challenge to understand and control the factors of materials transformation in aqueous systems [1][2]. Under ambient conditions, nanostructured and highly dispersed metal oxides are instantaneously coated with thin water films. These
  • study the flood gun was not needed because a metallic substrate was used. Additionally, metal oxides can also be damaged by an electron beam [17]. Indeed, imaging metastable oxide and hydroxide nano- and mesostructures with SEM is difficult due to the effect the electron beam may have on the sample. For
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016
Other Beilstein-Institut Open Science Activities