Search results

Search for "spin" in Full Text gives 570 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • for quantum computation. The behavior of nanosized superconductors as one-dimensional quantum oscillators [1], Josephson junction arrays [2], electronic transport devices [3][4][5][6][7], very small-scale devices [8][9], micrometer-scale coolers [10], or thermal and spin sensors [11][12] has been
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer

  • Kamila A. Szewczyk,
  • Izabela A. Domagalska,
  • Artur P. Durajski and
  • Radosław Szczęśniak

Beilstein J. Nanotechnol. 2020, 11, 1178–1189, doi:10.3762/bjnano.11.102

Graphical Abstract
  • the other hand, the parameter γ determined by us exceeds the value of γW = 0.034 [87], which was obtained based on the Ward identity [85][88][89]. Note that Ward-type identities result from the conservation of the total charge and the total spin of fermions, as a result of which one can obtain the
PDF
Album
Full Research Paper
Published 07 Aug 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • layer [30][31], the bandgap of the hybrid structure amounts to only approx. 1.7 eV [29]. Interestingly, the states at the K point are much less affected than the states at the Γ point. Hence, the system remains promising for optoelectronic devices with selective access to the spin–orbit-split bands at K
PDF
Album
Full Research Paper
Published 20 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • the electrons at the bottom of the conduction band (mc* = 0.67m0) as well as the holes at the four top valence bands (mv1* = 3.32m0, mv2* = 3.83m0, mv3* = 3.23m0 and mv4* = 3.23m0) were calculated in the Г-point of the Brillouin zone. The magnitude of the valence band splitting V1–V2 due to the spin
  • absorption, reflection and excitonic spectra were obtained. The Sb2Se3 crystalline anisotropy of the ground and excited states of four excitonic series were determined at 300 and 11 K. Due to the crystal field (Δcf) and spin–orbit (Δso) interactions, the high valence band splittings were estimated in the
  • symmetries), respectively [27]. Considering that the bands originate from the structures with a higher symmetry (tetragonal) to the structures with an orthorhombic symmetry (D2h), it should be noted that the bands in k = 0 are split by a crystal field and a spin–orbit interaction [27]. The lower conduction
PDF
Album
Full Research Paper
Published 16 Jul 2020

A new photodetector structure based on graphene nanomeshes: an ab initio study

  • Babak Sakkaki,
  • Hassan Rasooli Saghai,
  • Ghafar Darvish and
  • Mehdi Khatir

Beilstein J. Nanotechnol. 2020, 11, 1036–1044, doi:10.3762/bjnano.11.88

Graphical Abstract
  • Green’s functions and α is the lowest and highest self-energies due to coupling to the electrodes. The current at the electrode α (left to right) with spin σ is calculated using [28][29]: The following relation determines the effective crossing coefficients [30]: To investigate and compare photodetectors
PDF
Album
Full Research Paper
Published 15 Jul 2020

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • received FGDA nanocubes as the contrast agent. The animals were anesthetized with 2% isoflurane inhalation anesthesia while the MRI was being performed. T1WI and T2WI were acquired by the turbo spin echo (TSE) sequence with TR/TE = 550/14 ms and TR/TE = 2510/101 ms, respectively. After the FGDA nanocubes
PDF
Album
Full Research Paper
Published 08 Jul 2020

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • -layer resist (LOR 3B and ma-P 1205) was spin-coated on the glass substrate with the GaAs nanowires and was exposed with the pattern containing the contact pad structure of 1.5 mm × 1.5 mm using the laser writer. After the development of the exposed contact pad structure, a thin layer of 50 nm Cr
PDF
Album
Full Research Paper
Published 29 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • the composition range x = 0.00–0.40 has been prepared by sol–gel spin coating on Si substrates with a post-deposition thermal treatment in the temperature range of 400–650 °C. The morphology of the films was investigated by scanning electron microscopy and atomic force microscopy while their light
  • ; photoluminescence; photosensitivity; spin coating; thin films; ZnMgO semiconductor alloy; Introduction The ZnMgO solid solution system is of interest due to the possibility to tailor many important physical properties by varying their composition. This alloy system covers a wide ultraviolet (UV) spectral range
  • (MOCVD) [18][19], hydrothermal [4], chemical bath deposition (CBD) [20], sol–gel spin coating [21][22][23][24][25][26][27][28][29], and spray pyrolysis [28][29][30][31][32][33][34]. Among these techniques, the sol–gel spin coating method has the advantage of ensuring easy control and handling of
PDF
Album
Full Research Paper
Published 12 Jun 2020

A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer

  • Pavel M. Marychev and
  • Denis Yu. Vodolazov

Beilstein J. Nanotechnol. 2020, 11, 858–865, doi:10.3762/bjnano.11.71

Graphical Abstract
  • : where is the electron heat conductivity of the S layer in the normal state, and N(0) is the one-spin density of states on the Fermi level, is the thermal healing length, β = [γτesc 450ζ(5)T/[τ0π4Tc0], ζ(5) ≈ 1.03, τesc is the escape time of nonequilibrium phonons to the substrate, γ = 8π2Ce(Tc0)/Cp(Tc0
PDF
Album
Full Research Paper
Published 02 Jun 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • magnetically soft, tunable and weak in the sense of small spin-polarization of the conduction band [10][28]. The latter provides a large superconducting coherence length and hence bypasses a necessity to deposit flat, nanometer-thick continuous layers expected for strong elemental ferromagnets. A combination
  • are indications of non-homogeneous, nanoclustered magnetism in Pd0.99Fe0.01 films grown on niobium [31], which may cause a shortening of the spin-memory length [32] and a reduction of the Josephson critical current. In general, the metallic Nb lattice (body-centered cubic with aNb = 329.4 pm) poorly
PDF
Album
Full Research Paper
Published 15 May 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • includes its high mobility of ≈500 cm2/V·s at room temperature, and a strong spin–orbit coupling [3][13][14]. Thus, it is not surprising that a rich variety of electronic and optoelectronic devices have already been demonstrated using 1L WSe2 which harnesses its exceptional properties [13][15][16]. It is
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • , Gunma, 370-1292, Japan Mechanical Engineering Department, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Kingdom of Saudi Arabia 10.3762/bjnano.11.61 Abstract Single-photon sources and their optical spin readout are at the core of applications in quantum communication
  • ) with proven single-photon emission from the visible to infrared, a quantum spin–photon interface, and ancilla qubits, it is expected that other material platforms could emerge with similar characteristics in the near future. These two materials also naturally lead to monolithic integrated photonics as
  • spin–photon interfaces for remote spin–photon entanglement with available nuclear spins as ancilla qubits for quantum memory [11][12]. These include the nitrogen-vacancy (NV) center in diamond [13], the silicon-vacancy center in diamond [14][15][16], the germanium-vacancy center in diamond [17], the
PDF
Album
Review
Published 08 May 2020
Graphical Abstract
  • considers the interfaces of the Gr/hBN regions are parallel to the transport direction so that there are no bandgap variations in the transport direction. Since the electron transport is in zigzag direction, spin-polarized transport calculations are utilized. Instead, in the study presented here, the
  • electron transport is in armchair direction, which is not spin-polarized. Therefore, nonequilibrium Green’s functions with tight-binding Hamiltonians (without considering spin degree of freedom) are utilized for electronic transport calculations. Furthermore, in the proposed RTD there are four GNR/BNNR
PDF
Album
Full Research Paper
Published 24 Apr 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • -resolution spectra for these elements. The direct evidence for metallic silver embedded in the polymer matrix is the spin–orbit doublet recorded at 368.3 and 374.3 eV for Ag 3d5/2 and 3d3/2, respectively (Figure 5A), followed by plasmon loss peaks at 372 and 378 eV [30][31]. However, the asymmetric shape of
  • the spectra suggests another spin–orbit pair with binding energies at 368.8 and 374.8 eV. This indicates the presence of some other form of silver, e.g., Ag bonded to organic molecules [32] or non-reduced silver ions [33] embedded in the gel layer. The content of this form of silver is ca. 37.1% (w/w
  • , with respect to the overall amount of Ag). The S 2p signal reveals the presence of two non-equivalent types of sulfur atoms in the sample (the ratio of these two types of atoms is 1.2:1). The spin–orbit doublet (2p3/2/2p1/2) with a 2:1 intensity ratio and a binding energy splitting of 1.16 eV was used
PDF
Album
Full Research Paper
Published 14 Apr 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • out with density functional theory (DFT) using the Vienna ab initio simulation package (VASP) version 5.4 [34]. It uses 3D periodic boundary conditions and the spin-polarized generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof (PBE) approximation to the exchange–correlation
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • mL of deionized (DI) water for 4 h at 60 °C. Then, the solution was heated in an oven for 20 h at 60 °C. Next, ZnO seeds were synthesized on the Si substrates through spin-coating. First, a drop of the seed solution was put onto the cleaned substrate at 700 rpm for 10 s and then at 2000 rpm for 60 s
PDF
Album
Full Research Paper
Published 24 Feb 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • procedure published by Liang et al. [28]. PTB7 (Ossila, Mw = 85 kDa, PDI = 2.0) and PC71BM (Solenne BV, 99% purity) were used as received. A thin layer of filtered (0.45 µm) PEDOT:PSS (Baytron A14083, Clevios) was spin-coated onto the activated ITO surface at 5000 rpm for 25 s, 4000 rpm for 60 s and 4000
  • rpm for 1 s (≈30 nm) and annealed at 120 °C for 10 min under ambient conditions. The substrate was then transferred into an argon-filled glovebox for spin-coating of an active layer of the PTB7:PC71BM solution (1:1.5 weight ratio, 25 mg∙mL−1 total concentration) in anhydrous chlorobenzene. The blend
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • , e.g., single-flux quantum circuits [46][47], spintronic devices [48], memory elements [49][50][51][52][53][54][55][56][57][58] and spin-valves [59][60][61][62][63][64][65], magnetoelectronics [66][67][68], qubits [69], artificial neural networks [70], microrefrigerators [71][72], and low-temperature
  • (G = cos θ) and anomalous (F = sin θ) Green’s functions and write the Usadel equations in the F layers in the form [94][95], where the positive and negative signs correspond to the spin-up (“↑”) and spin-down (“↓”) states, respectively. In terms of the electron fermionic operators ψ↑(↓) the spin-up
  • state corresponds to the anomalous Green’s function F↑ ∼ ⟨ ψ↑ψ↓⟩, while spin-down state corresponds to F↓ ∼ ⟨ψ↓ψ↑⟩. The expressions ω = 2πT(n + 1/2) are the Matsubara frequencies, where n = 0, ±1, ±2, …, and h is the exchange field in the ferromagnet. The scattering times are labeled here as τz, τx, and
PDF
Album
Full Research Paper
Published 23 Jan 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • 2p3/2 and Co 2p1/2, respectively, indicating that the NiMoO4@Co3O4/CA composite electrode material contains both Co3+ and Co2+ [35]. The peaks at 787.1 and 802.8 eV with a spin-energy separation of 15.7 eV can be attributed to the shake-up satellite peaks of Co2+ [36]. Figure 4d shows the Ni 2p
  • spectrum where two characteristic peaks appear at 856.5 and 874.3 eV along with two shake-up satellite peaks with a spin-energy separation of 17.8 eV, corresponding to the Ni 2p3/2 and the Ni 2p1/2 levels of Ni2+ [37][38]. The Mo 3d core-level spectrum (Figure 4e) shows two main peaks at 232.4 and 235.5 eV
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • result of the interaction between a single magnetic impurity (e.g., a magnetic atom or a localized spin) and the free electrons in a nonmagnetic material (e.g., a continuum of states) [23][24]. The Kondo effect has been extensively studied theoretically within the framework of the EOM method applying the
  • , to the right for spin-up electrons and to the left for spin-down electrons. Thus, the Kondo peaks originally located at the values of the chemical potentials are split into two new peaks. It was found that the differential conductance consists of an observable peak when the asymmetric bias voltage
  • Hamiltonian, which describes the massless Dirac fermions in the left (L) and right (R) graphene leads and can be expressed as: where and cαskσ denote the creation and annihilation operators of the Dirac fermions with wave vector k and spin σ. Here, α identifies the channel in the left (L) and right (R
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • films Benefiting from the advances of various film deposition techniques, such as one-step spin coating [13][21], two-step sequential solution deposition [22][23] and inkjet printing fabrication [24][25], unprecedented progress in the improvement of the efficiency of PSCs has been made. To obtain high
  • deposition approach based on one-step spin coating, which involves dripping a noncoordinate solvent such as toluene, chlorobenzene, dichlorobenzene or trifluorotoluene onto the perovskite film while spinning. This method has shown to produce extremely smooth and homogeneous perovskite films. PSCs with a PCE
  • development of large-scale semi-transparent PSCs with large area, having diverse applications in the field of building-integrated photovoltaics (BIPVs) or as top cells for tandem devices. It has become a problem that a considerable amount of toxic Pb-containing material is discarded during the spin coating
PDF
Album
Review
Published 06 Jan 2020

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • spin carrier. However, a full saturation of the magnetization is not observed at 40 kOe, probably because of a partial loss of the magnetic anisotropy of TbIII in the deposits (vide infra). Dynamic magnetic measurements have also been performed (Figure 5). In these measurements, the magnetic
  • susceptibility χ is measured as χ = χ′ + iχ″ where χ′ is the in-phase and χ″ is the out-of-phase magnetic susceptibility. Clear magnetic signals have been observed. This is a remarkable result for such a tiny amount of spin centers. The in-phase signal (χ′) has been used to estimate the weight of the deposits by
  • layering on the mica substrate. This may be a result of i) the geometric distribution of the Tb coordination environment in the deposits similar to what has been observed when SMMs are dissolved in liquid matrixes [27] or ii) a modification of the spin–phonon coupling, as the phonon bath of such deposits
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • thin film when it is grown by CBD from an aqueous solution [18]. In 2018, PCE ≈ 5.7% was achieved for a cell based on a spin-coated Sb2S3 absorber, and the same group further increased the PCE of this cell to 6.4% by Zn doping during spin-coating of Sb2S3 [39][40]. Soon after, by doping Sb2S3 with CsOH
  • , the PCE of planar Sb2S3 solar cells was boosted from 4.3% to 6.6% [41]. When looking forward to mass production on meter-sized substrates, however, spin-coating cannot be upscaled due to design limitations [42]. Industrialization is feasible only for low-cost, upscalable methods, to the detriment of
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • systems for quantum devices such as single-photon sources and spin–photon interfaces for quantum interconnects [1][2][3]. Points defects or color centers in SiC are considered as alternative candidates for quantum applications such as solid-state quantum bits [4][5], spin–photon interfaces [6], single
  • -photon sources (SPSs) [7][8][9][10], nanoscale magnetic or electric fields sensors, and pressure or temperature sensors [3][11][12][13]. Electrically driven SPSs in SiC have been realized [14][15][16], and the coherent control of electron spin can be achieved up to 500 K [17]. SiC offers an alternative
  • . Current studies aim to determine more accurately the quantum properties of these defects by using more recent methods of single-photon detection and single-color center isolation, and quantum coherent spin control. The parameters used to describe the quantum properties of color centers include zero-phonon
PDF
Album
Full Research Paper
Published 05 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • . Device fabrication Prior to spin-coating, the ITO glass substrate was cleaned sequentially with detergent, acetone, ethanol, deionized water, each for 15 min, then dried with a nitrogen flow, and then cleaned with UV/ozone for 20 min. A thin layer of SnO2 nanoparticles was spin-coated on the ITO
  • substrate at 4000 rpm for 30 s and annealed at 150 °C for 10 min, then treated with UV/ozone for 20 min. The Pb(NO3)2 layer was prepared by spin-coating an aqueous Pb(NO3)2 solution (the concentration of Pb(NO3)2 was 1.0 M, doped with 0, 0.5, 1, 2, or 3 mg/mL PVP) at 4000 rpm for 20 s and annealed at 100 °C
  • transport layer (HTL) was spin-coated on top of the CH3NH3PbI3 film using a Spiro-OMeTAD solution (the composition of the Spiro-OMeTAD solution was 72.3 mg Spiro-OMeTAD, 28.8 μL 4-tert-butylpyridine, 17.5 μL of lithium bis(trifluoromethanesulfonyl)imide solution (520 mg/mL in acetonitrile) and 1 mL
PDF
Album
Full Research Paper
Published 05 Dec 2019
Other Beilstein-Institut Open Science Activities