Search results

Search for "zeta potential" in Full Text gives 218 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles

  • Christian D. Ahrberg,
  • Ji Wook Choi and
  • Bong Geun Chung

Beilstein J. Nanotechnol. 2018, 9, 2413–2420, doi:10.3762/bjnano.9.226

Graphical Abstract
  • potential of 20.2 ± 0.25 mV, and particles synthesized in droplets had a zeta potential of 16.9 ± 0.5 mV. The two measured potentials are in the same range, indicating a relative colloid stability of the particle solutions [33]. To test the advantages of droplet synthesis over batch synthesis, particle size
  • concentration is increased by more than one order of magnitude in droplet reactions, the fast precipitation of large amounts of nanoparticles could lead to the buildup of nanoparticle deposits on the fused silica capillaries in some cases and to a blocking of the capillaries. The batch particles showed a zeta
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2018

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • with the distance from the metal surface. Chloride ions, when used at concentrations higher than 0.1 M, induce the aggregation of the metal colloids. The addition of Cl− ions to the colloidal solution reduces the absolute zeta potential value of the nanoparticles, leading to a decrease in the stability
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation

  • Alina M. Ermakova,
  • Julia E. Morozova,
  • Yana V. Shalaeva,
  • Victor V. Syakaev,
  • Aidar T. Gubaidullin,
  • Alexandra D. Voloshina,
  • Vladimir V. Zobov,
  • Irek R. Nizameev,
  • Olga B. Bazanova,
  • Igor S. Antipin and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 2057–2070, doi:10.3762/bjnano.9.195

Graphical Abstract
  • ] software packages. DLS, SLS, and zeta-potential measurements were carried out by employing a Zetasizer nano ZS with Dispersion Technology Software 5.00. The measurements were carried out at 25 °C in polystyrene cells, for temperature-dependent DLS measurements (25–65 °C) and SLS measurement, a glass
  • cuvette PCS8501 (Malvern) was utilized. The SLS measurements were carried out in ethanol solution. Zeta-potential measurements were carried out in folded capillary cells DTS1061 (Malvern). Zeta-potential values were calculated from electrophoretic mobilities by using the Hückel approximation for solutions
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2018

Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis

  • Jong Tae Moon,
  • Seung Ki Lee and
  • Ji Bong Joo

Beilstein J. Nanotechnol. 2018, 9, 1715–1727, doi:10.3762/bjnano.9.163

Graphical Abstract
  • carbon remained in the particle. However, TiO2-500 and TiO2-800 showed a negligible weight loss, indicating no obvious carbon species in the particle (Supporting Information File 1, Figure S3b). In addition, we measured the zeta potential of the calcined TiO2 samples for estimating the surface charge
  • . Although zeta potential values of TiO2 samples do not exactly represent quantitative analysis of surface functional groups, it is a useful method to estimate the surface charge which is highly related with the surface OH group. The results show that the zeta potential values are estimated to be
  • approximately −40, −23.8 and −24.9 mV nm for TiO2-350, TiO2-500, and TiO2-800, respectively. It means that the TiO2 sample calcined at low temperature (350 °C) should have a relatively large amount of surface OH groups. Once the calcination temperature is higher than a certain point (e.g., 500 °C), the zeta
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • )-coated superparamagnetic iron oxide nanoparticles (PEG-SPIOs) with the synthetic pseudotannin polygallol via interpolymer complexation (IPC). Changes in particle size and zeta potential were indirectly assessed via differences between PEG-SPIOs and IPC-SPIOs in particle velocity and scattering intensity
  • using near-field light scattering. The local scattering intensity is correlated with the distance between the particle and waveguide, which is affected by the size of the particle (coating thickness) as well as the interactions between the particle and waveguide (related to the zeta potential of the
  • the attraction between the nanoparticle and waveguide. Researchers attributed the increased diffusion of PEGylated particles towards the waveguide to the slight reduction in particle surface charge (zeta potential) after PEGylation [24]. This study provided evidence that the nanophotonic force
PDF
Album
Full Research Paper
Published 18 Apr 2018

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

  • Nagamalai Vasimalai,
  • Vânia Vilas-Boas,
  • Juan Gallo,
  • María de Fátima Cerqueira,
  • Mario Menéndez-Miranda,
  • José Manuel Costa-Fernández,
  • Lorena Diéguez,
  • Begoña Espiña and
  • María Teresa Fernández-Argüelles

Beilstein J. Nanotechnol. 2018, 9, 530–544, doi:10.3762/bjnano.9.51

Graphical Abstract
  • (inset of Figure 3), which confirms that the obtained C-dots are of crystalline graphitic nature [29][30][31]. Hydrodynamic radii measured by DLS gave rise to values of 11.0, 10.3, 15.0 and 11.2 nm (Figure 4), and zeta potential values of −16.0, −32.9, −16.3 and −24.2 mV for cinnamon, red chilli
  • observed between the absolute value of the zeta potential and the cellular uptake observed in both LN-229 and HK-2 cells. XRD patterns of the four synthesized C-dots have been also studied, and the obtained results are given in Figure 5. The cinnamon, red chilli, turmeric and black pepper C-dots
  • TEM of 3.37, 3.14, 4.32 and 3.55 nm, respectively. Additionally, the high values of negative zeta potential that all the spice-based C-dots presented ensure a great colloidal stability in biological media. The four different spice-based C-dots have been systematically evaluated to study the in vitro
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2018

Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes

  • Mikhail F. Butman,
  • Nikolay L. Ovchinnikov,
  • Nikita S. Karasev,
  • Nataliya E. Kochkina,
  • Alexander V. Agafonov and
  • Alexandr V. Vinogradov

Beilstein J. Nanotechnol. 2018, 9, 364–378, doi:10.3762/bjnano.9.36

Graphical Abstract
  • interaction forces between the particles and provides information on the charge state of the surface of particles in the suspension. It is worth noting that all the samples possess negative values of the zeta potential in water. As is evident from Table 3, the zeta potential values for TiO2-PMMx ranged from
  • −26.4 to −31.5 mV. The TiO2-PMMHx samples show a decrease in the magnitude of the zeta potential. This result is probably related to the formation of larger particles of TiO2 on the external surface of MM due to flocculation at high titanium content, which leads to a reduction in their electrophoretic
  • zeta potential for the samples tested in this work. Elemental analysis of the MM, TiO2-PMM500, and TiO2-PMMН500 samples. Textural characteristics of TiO2-pillared MM samples. Parameters of methyl orange (MO) and rhodamine B (RhB) dye adsorption kinetics for the obtained TiO2-pillared MM samples
PDF
Album
Full Research Paper
Published 31 Jan 2018

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • shell coated with an amphiphilic polymer and functionalised with carboxylate. The QDs have an emission maxima of 655 nm. Xu et al. reported that the hydrodynamic diameter of the nanoparticles is 14.55 ± 4.157 nm and the zeta potential is −35.1 mV [51]. The stock solution was prepared at a concentration
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

  • Stefan Fringes,
  • Felix Holzner and
  • Armin W. Knoll

Beilstein J. Nanotechnol. 2018, 9, 301–310, doi:10.3762/bjnano.9.30

Graphical Abstract
  • dispersion was used within a few hours. A pH of 6.8 ± 0.2, a zeta potential of ζ = −58 mV, a specific conductivity of Λ = 11.5 μS cm−1, and hydrodynamic diameter of 2a = 62.1 nm were measured for a 1:150 diluted dispersion using a Malvern Zetasizer. We observed a linear dependency between the conductivity
PDF
Album
Full Research Paper
Published 26 Jan 2018

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • samples were carboxylated [2][28], (part# ND5nmNH20) and as manufactured have an average particle size of 5 nm and a zeta potential of −50 mV [29]. The +ND samples were hydroxylated in the course of a reduction reaction [28], (part# ND5nmPH20) and, as manufactured, have an average particle size of 5 nm
  • and a zeta potential of +45 mV. The suspensions were employed as received from the manufacturer in the form of 1 wt % slurries in DI water, and stored without exposure to light. The suspensions were diluted tenfold by volume in advance of experiments using DI water to yield 0.1 wt % suspensions
  • shear. Therefore a custom design of nanolubrication systems by a proper chemical passivation of ND surfaces appears as a promising approach. Hydroxylated NDs bearing a positive zeta potential in aquelus dispersion, produced no significant response in the frequency or resistance behavior of the QCM
PDF
Album
Full Research Paper
Published 29 Sep 2017

Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics

  • Stefania Lettieri,
  • Marta d’Amora,
  • Adalberto Camisasca,
  • Alberto Diaspro and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2017, 8, 1878–1888, doi:10.3762/bjnano.8.188

Graphical Abstract
  • environment. The oxi-CNOs were found to have an effective hydrodynamic diameter of 274 ± 16 nm, while the fluo-CNOs have an average diameter of 357 ± 32 nm. The zeta potential changed from −45 ± 5 mV for the oxi-CNOs to −35.9 ± 1 mV for the fluo-CNOs, confirming the functionalization of the oxi-CNOs with the
  • concentrations of 20, 10 and 5 μg mL−1. Dynamic light scattering and zeta potential measurements DLS measurements were performed on the Malvern Nano-ZS instrument operating in backscattering (173°) mode and analyzed with the Zetasizer software, with automatic selection of the optimal detector position and number
  • −1. The CNO samples were sonicated for an additional 20 min and the particle size was measured. Zeta potential measurements were performed on the same apparatus using the disposable zeta potential cuvettes. NMR spectroscopy NMR spectroscopy was performed on a Bruker Avance III 400 MHz system (400.13
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2017

Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene

  • Pavel L. Padnya,
  • Irina A. Khripunova,
  • Olga A. Mostovaya,
  • Timur A. Mukhametzyanov,
  • Vladimir G. Evtugyn,
  • Vyacheslav V. Vorobev,
  • Yuri N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2017, 8, 1825–1835, doi:10.3762/bjnano.8.184

Graphical Abstract
  • of the compounds 8–11. The zeta potential is another measure of the stability of colloidal systems. The zeta potential characterizes the degree and nature of the interaction between the particles of the disperse system: the larger the electrokinetic potential, the more stable the colloidal system. A
  • low zeta potential determines the tendency of the particles of a colloidal solution to coagulate and flocculate. It has been experimentally established [42] that the critical value of the zeta potential corresponding to the stability threshold of a colloidal system is 30 mV. The zeta potential of the
  • thiacalix[4]arene solutions 8–11 was determined at a concentration of 1 × 10−4 М in water (Table 2, Supporting Information File 1, Figure S21–S24). Large zeta potential values (more than 30 mV) also confirm the high stability of the aggregates of these compounds. For the associates of the compound 11, which
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2017

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

  • Dovile Baziulyte-Paulaviciene,
  • Vitalijus Karabanovas,
  • Marius Stasys,
  • Greta Jarockyte,
  • Vilius Poderys,
  • Simas Sakirzanovas and
  • Ricardas Rotomskis

Beilstein J. Nanotechnol. 2017, 8, 1815–1824, doi:10.3762/bjnano.8.183

Graphical Abstract
  • (Figure 3c), indicating that the Tween 80 was successfully coated onto the UCNPs. Additionally, dynamic light scattering (DLS) was employed to measure the hydrodynamic diameter of Tween-coated UCNPs in the cell culture medium as well as their surface zeta potential. The measured mean hydrodynamic diameter
  • of the Tween-coated core NaGdF4:Yb,Er UCNPs was 38 nm and the core–shell NaGdF4:Yb,Er@NaGdF4 particles was 48 nm. The zeta potential of Tween 80-coated core nanoparticles was about 26 mV and for core–shell nanoparticles it was slightly higher at about 33 mV. More detailed information about the DLS
  • equations: where ni and Di are the number and diameter of the particle, respectively. Dynamic light scattering (DLS) was used to determine the hydrodynamic particle diameter and zeta potential. These experiments were performed with Brookhaven ZetaPALS zeta potential analyzer (Brookhaven Instruments, USA
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2017

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Antonín Brož,
  • Lucie Bačáková,
  • Pavla Štenclová,
  • Alexander Kromka and
  • Štěpán Potocký

Beilstein J. Nanotechnol. 2017, 8, 1649–1657, doi:10.3762/bjnano.8.165

Graphical Abstract
  • NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle
  • influencing the bulk of the NDs (formation of vacancies, and N-V sites supported by high-temperature annealing in vacuum) [39]. This was confirmed by the fact that there was no obvious difference in the FTIR spectra between the MR-18 sample and the AR-40 sample. The zeta potential of MR-type NDs were negative
  • , typically in the range of −20 to −40 mV [40][41], comparable with the −37 mV zeta potential value of the AR-40 sample. The stock concentration of AR-40 did not allow us to test the effect of the highest ND concentration (1000 µg/mL, 300 µg/cm2). Next, we compared the influence of surface treatment by
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Development of an advanced diagnostic concept for intestinal inflammation: molecular visualisation of nitric oxide in macrophages by functional poly(lactic-co-glycolic acid) microspheres

  • Kathleen Lange,
  • Christian Lautenschläger,
  • Maria Wallert,
  • Stefan Lorkowski,
  • Andreas Stallmach and
  • Alexander Schiller

Beilstein J. Nanotechnol. 2017, 8, 1637–1641, doi:10.3762/bjnano.8.163

Graphical Abstract
  • ) (PLGA). PLGA microspheres loaded with NO550 dye were prepared through a modified solvent-evaporation method. Microparticles were characterized by a mean hydrodynamic diameter of 3000 nm, zeta potential of −26.000 ± 0.351 mV and a PDI of 0.828 ± 0.298. Under abiotic conditions, NO release was triggered
  • and reproducible process (for more experimental data please see Section 1 and Section 2 of Supporting Information File 1). The particles showed a mean hydrodynamic diameter of 3000 nm, a zeta potential of −26.000 ± 0.351 mV and a PDI of 0.828 ± 0.298. Furthermore, NO550-loaded microspheres were
  • characterised by a slightly more irregular surface with small pores compared to blank microspheres (Figure 1). In contrast, blank microspheres showed a mean hydrodynamic diameter of 3000 nm, a zeta potential of −1.250 ± 0.132 mV and a PDI of 0.253 ± 0.042. The blank microspheres are similarly sized spherical
PDF
Album
Supp Info
Letter
Published 08 Aug 2017

The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential

  • Dalei Jing,
  • Yunlu Pan and
  • Xiaoming Wang

Beilstein J. Nanotechnol. 2017, 8, 1515–1522, doi:10.3762/bjnano.8.152

Graphical Abstract
  • lubricant under the influence of the EDL shows a non-monotonic trend, changing from enhancement to attenuation with a gradual increase in the absolute value of the zeta potential. This non-monotonic hydrodynamic lubrication is dependent on the non-monotonic electroviscous effect of the lubricant generated
  • lubrication; zeta potential; Introduction As one of the oldest techniques in modern engineering, lubrication is widely recognized and has inspired significant scientific interest [1][2][3][4]. The use of a layer of lubricant film, either in solid or fluid state, between frictional pairs can effectively
  • the EDL on modifying the conventional Reynolds equation, analyzing the hydrodynamic lubrication. They found that the minimum lubricant film thickness increased with the increasing absolute value of zeta potential (an important parameter of EDL to manifest the surface charge at the solid–liquid
PDF
Album
Full Research Paper
Published 25 Jul 2017

A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity

  • Svitlana Prylutska,
  • Svitlana Politenkova,
  • Kateryna Afanasieva,
  • Volodymyr Korolovych,
  • Kateryna Bogutska,
  • Andriy Sivolob,
  • Larysa Skivka,
  • Maxim Evstigneev,
  • Viktor Kostjukov,
  • Yuriy Prylutskyy and
  • Uwe Ritter

Beilstein J. Nanotechnol. 2017, 8, 1494–1501, doi:10.3762/bjnano.8.149

Graphical Abstract
  • wavelength of 633 nm. The measurements were performed at a 173° scattering angle (NIBS technology). The autocorrelation function of the scattered light intensity was analyzed by the Malvern Zetasizer software. The zeta potential was measured with a Zetasizer Nano ZS (Malvern Ins. Ltd) using a universal dip
  • cell in disposable cuvettes. The Smoluchowski approximation was used to convert the electrophoretic mobility to the zeta potential. AFM study The surface morphology of the particles was examined using atomic force microscopy (AFM). AFM images were collected using an Integra Spectra microscope (NTMDT
  • previous study of C60+Cis complexation [39]. The zeta potential of the C60+Cis mixture measured in this work equals to −16.8 mV at room temperature. It is known from previous studies that C60 fullerene clusters not containing any guest molecules have a zeta potential equal to −23 mV in water solution [41
PDF
Album
Full Research Paper
Published 20 Jul 2017

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

  • Gamze Varan,
  • Juan M. Benito,
  • Carmen Ortiz Mellet and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1457–1468, doi:10.3762/bjnano.8.145

Graphical Abstract
  • -formulation studies were used as a basis for selecting the suitable organic solvent and surfactant concentration for the novel polycationic cyclodextrin nanoparticles. The nanoparticles were then extensively characterized with particle size distribution, polydispersity index, zeta potential, drug loading
  • PCX not only in the hydrophobic cavity but also between the long cationic aliphatic chains of the cyclodextrin as PCX and CD are co-nanoprecipitated during the preparation method. Table 4 shows the final mean particle size, PDI and zeta potential values of PCX-loaded amphiphilic CD nanoparticles. The
  • therapy can be provided with lower drug dose. Zeta potential measurements indicate that 6OCaproβCD has a negative surface charge unlike the other formulations. In this study, PC βCDC6 has a strong positive surface charge owing to polycationic amino groups. This amphiphilic CD derivative was previously
PDF
Album
Full Research Paper
Published 13 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • , the particle size increases in each emulsification step. In addition, double emulsion resulted in a significant difference in the zeta potential of nanoparticles (p < 0.05). The surface charge of blank nanoparticles prepared by double emulsification was closer to neutral charge as compared to those
  • formation of an extra surfactant layer and this layer increases the particle size. Besides that, this surfactant layer probably covered the polymer surface and thus the zeta potential of the nanoparticles approached a more neutral value. To render a positive surface charge to blank PCL or mePEG-PCL
  • that have a zeta potential value smaller than 30 are more stable and show reduced aggregation [68][69]. In vitro characterization of docetaxel-loaded nanoparticles According to the results of the pre-formulation studies, the final formulation parameters were determined and nanoparticles were prepared
PDF
Album
Full Research Paper
Published 12 Jul 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • software ImageJ (Version: 1.45a; http://rsbweb.nih.gov/ij/). In brief, after background subtraction and adjustment of brightness and contrast the SEM or TEM images were converted to 8-bit binary images. Particle size diameter and shape were counted automatically. Zeta-potential measurements: The ζ
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

Evaluation of quantum dot conjugated antibodies for immunofluorescent labelling of cellular targets

  • Jennifer E. Francis,
  • David Mason and
  • Raphaël Lévy

Beilstein J. Nanotechnol. 2017, 8, 1238–1249, doi:10.3762/bjnano.8.125

Graphical Abstract
  • protein adsorption and thus the formation of a protein corona [38]. Qdots with a zwitterionic surface have a zeta potential of near zero, are resistant to non-specific binding onto cells, and have a high colloidal stability [39]. Commercially available Qdot-Abs evaluated in this report were used in fixed
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2017

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

  • Liga Saulite,
  • Dominyka Dapkute,
  • Karlis Pleiko,
  • Ineta Popena,
  • Simona Steponkiene,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2017, 8, 1218–1230, doi:10.3762/bjnano.8.123

Graphical Abstract
  • Thermo Fisher Scientific, USA. QDs are composed of a CdSe core with a ZnS shell that are coated with amphiphilic polymers and functionalized with carboxylate. The QDs have an emission maximum at 655 nm. Xu et al. measured the hydrodynamic diameter of the nanoparticles to be 14.55 ± 4.157 nm and a zeta
  • potential of −35.1 mV [60]. The stock solution is 8 µM in 50 mM borate, pH 9.0. Further preparations of the QD solution are described in each methodological part separately. QD uptake dynamics using flow cytometry To estimate the optimal QD concentration for uptake experiments, MSCs were seeded at a density
PDF
Album
Full Research Paper
Published 07 Jun 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • peak fitting procedures and the areas of each component were modified according to classical Scofield sensitivity factors. The initial and final total organic carbon (TOC) content was determined using a Shimadzu TOC-VCSH analyzer to evaluate the degree of photomineralization. The zeta potential (ζ) of
  • -equilibrated and N2-purged aqueous solutions. Supporting Information File 68: Additional figures. Acknowledgements This work is supported by the Agence Nationale pour la Recherche (ANR CD2I 2013, project PRUMOS). The authors thank Dr. Khalid Ferji (LCPM, Université de Lorraine) for the zeta potential
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
PDF
Album
Supp Info
Review
Published 05 May 2017

Selective detection of Mg2+ ions via enhanced fluorescence emission using Au–DNA nanocomposites

  • Tanushree Basu,
  • Khyati Rana,
  • Niranjan Das and
  • Bonamali Pal

Beilstein J. Nanotechnol. 2017, 8, 762–771, doi:10.3762/bjnano.8.79

Graphical Abstract
  • from the observed changes in the optical absorption, plasmon band, zeta potential, DLS particle size distribution, as well as TEM and AFM surface morphology analysis. Circular dichroism studies also revealed that DNA-functionalized AuNP binding caused a conformational change in the DNA structure. Due
  • propionic acid (MPA). The synthesized AuNSs had a CTAB coating and were positively charged in nature. The values obtained for the zeta potential, conductance and mobility are summarized in Supporting Information File 1, Table S2. In Figure 7, the zeta potential is given before binding with DNA for bare
  • AuNSs and AuNRs to be +22.8 mV and +26.16 mV, respectively. However, zeta potential of DNA was −16.84 mV and upon binding with AuNSs and AuNRs changed to +16.67 mV and +10.40 mV, respectively. It was observed that after DNA–AuNP binding, the resultant electronic charge of the Au–DNA nanocomposite is
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2017
Other Beilstein-Institut Open Science Activities