Search results

Search for "Si" in Full Text gives 804 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • the procedure for the controllable operation of devices based on S/F heterostructures. Samples We study two types of Nb/Co MLs with different numbers of F-layers and layer thicknesses. The simplest S1, Nb(50 nm)/Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)/Si ML (bottom-to-top), has just two dissimilar Co
  • layers composing a single pseudo spin valve. A more complex S2, Nb(50 nm)/[Co(1.5 nm)/Nb(6 nm)/Co(2.5 nm)/Nb(6 mn)]3Co(1.5 nm)/Nb(6 nm)/Si (the structure in square brackets is repeated three times) has five Co layers. MLs are deposited by magnetron sputtering in a single deposition cycle without breaking
  • the vacuum. We use a Nb target (99.95% purity) for deposition of S-layers, Co (99.95% purity) for F-layers, and Si (99.999%) for seeding bottom and protective top layers. MLs are grown on a Si(111) wafer. Prior to deposition, targets were precleaned by plasma-etching for 3 min and in addition for 1
PDF
Album
Full Research Paper
Published 17 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • (STEM) images after nearest neighbor down-sampling. This enabled an increase in image resolution of up to 100-fold, decreasing scanning time and electron dose [120]. Another application of CNNs for STEM was for atomic defect classification [121]. The goal was to characterize defects related to Si
  • was trained on simulated STEM images. Then, scanning tunneling microscopy (STM) images of the same sample were used to characterize the defects. STM images, which give the local density of states, measure not only the Si lattice, but also defect areas where this well-ordered lattice disappears. Such
  • images were compared with those computed by density functional theory (DFT) based on well-known single and dimer Si defects. The examples given here demonstrate the utility of deep learning in general and CNN in particular in the field of microscopy. In the following section, the emphasis is narrowed
PDF
Album
Review
Published 13 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • aluminosilicate sheet that folds over itself in virtue of the internal stress inherent to the crystalline structure of the material, forming nanotubes [25]. As shown in Figure 1, it folds with a silicate phase facing outwards (Si-O), and an aluminol phase facing inwards (Al-OH). Since the internal and external
  • spacing” of the oxygen atoms is different for the two crystalline phases, straining them to conform the oxygen into both structures at the same time. It is our theory that as the NaOH chemical bath etches Al and Si atoms from HNT [31][32], internal sharing of apical oxygen is reduced, diminishing the
PDF
Album
Full Research Paper
Published 05 Aug 2021

Reducing molecular simulation time for AFM images based on super-resolution methods

  • Zhipeng Dou,
  • Jianqiang Qian,
  • Yingzi Li,
  • Rui Lin,
  • Jianhai Wang,
  • Peng Cheng and
  • Zeyu Xu

Beilstein J. Nanotechnol. 2021, 12, 775–785, doi:10.3762/bjnano.12.61

Graphical Abstract
  • Lennard–Jones (LJ) potential is used to describe the interaction between the graphene layers and the tip substrate. The LJ parameters for C–C are εC–C = 2.84 meV, σC–C = 0.34 nm and for Si–C the parameters are εSi–C = 8.909 meV, σSi–C = 0.3326 nm (ε is the depth of the potential well, σ is the finite
  • distance). The cut-off distance for the C–C interaction is 1.19 nm. The cut-off distance for the Si–C interaction is changed to observe the impact on the simulation. Increasing the cut-off distance increases the number of atoms in the tip–sample interaction but the result is more accurate. For the gold
  • substrate, the interaction between Au atoms is calculated by the embedded atom method (EAM) potential [56]. The LJ potential is employed to calculate the interaction between Si and Au (εSi–Au = 5.4297 meV, σSi–Au = 0.33801 nm). Due to the relatively large size of the substrate compared to the tip and a
PDF
Album
Full Research Paper
Published 29 Jul 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • several articles reporting the photovoltaic effect for the n-type ZnO/p-type Si heterojunction [10][11][12][13][14]. In several works, open-circuit voltage (VOC), short-circuit current (JSC), fill factor (FF), and photovoltaic efficiency (Eff.) were reported for ZnO/Si solar cells. Such results were
  • . = 6.7%) [13]. In our previous work, we reported JSC = 32 mA·cm−2; VOC = 470 mV; FF = 69%; Eff. = 10.5%, and JSC = 38 mA·cm−2; VOC = 520 mV; FF = 71%; Eff. = 14% for planar and textured Zn1−xMgxO/Si solar cells, respectively [14]. A solar efficiency of up to 14% was reported by us for structures grown on
  • a 180 μm thick p-type Si substrate. Further cost reduction requires the use of a thinner Si substrate/absorber. Thus, in this paper we report photovoltaic results for a 50 μm thick Si absorber. Experimental Silicon preparation The p-type silicon wafer with thickness of 50 μm and a diameter of 5 cm
PDF
Album
Full Research Paper
Published 21 Jul 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • this, the new microrobot is expected to be used in targeted drug delivery and other biomedical fields. Si et al. [27] proposed a theoretical concept of a nanorobot consisting of a nanoparticle and four single-stranded DNAs placed on a quad-nanopore device for motion control. When an electric field is
PDF
Album
Review
Published 20 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • SiO2/Si substrate were irradiated on one half with 25 keV helium ions. It was found that at a dose of 2 × 1015 ions/cm2 a domain wall could be injected into the structure due to the introduction of lattice defects that locally reduced the perpendicular magnetic anisotropy. By raising the dose slightly
  • were so low, the change in optical properties was attributed to the local accumulation of defects (as opposed to collisional phase mixing). In a plasmonic application, resonant triangular nanostructures were created in a graphene sheet supported on SiO2/Si by selectively irradiating the graphene in the
  • ]. Here, neon line irradiation of an Si(25 nm)/SiO2(6.5 nm)/Si(bulk) stack was used to induce collisional mixing of silicon atoms into the buried SiO2 layer. Upon subsequent thermal annealing, 1D chains of silicon nanocrystals of 2.2 nm diameter self-assembled in the center of the SiO2 layer. A TEM-based
PDF
Album
Review
Published 02 Jul 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • ; gallium arsenide; photovoltaics; surface passivation; Introduction The atomic layer deposition (ALD) method is used for silicon passivation in photovoltaics. In recent years we proposed the usage of ALD for the construction of simplified Si-based cells [1]. Once zinc oxide (ZnO) nanorods were employed as
PDF
Album
Full Research Paper
Published 28 Jun 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • Ge on Si substrates, or the endotaxial growth of transitional metal silicides (e.g., CoSi2) [34][36]. In these studies, the NWs exhibit a narrow diameter distribution, in contrast to those obtained by VLS, which commonly have wider range due to the droplet size distribution. In the present work, we
  • epilayer and the substrate as detected in several heteroepitaxial systems, such as Ge on Si [42][43][44], InAs on GaAs [45], Co silicide [36], and silicides with different metals [35]. Such a mechanism is expected to occur in our Mn layers deposited on Ge(111) substrates, due to the large lattice mismatch
PDF
Album
Full Research Paper
Published 28 Apr 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • of the samples by depleting the films of oxygen. Figure 2 shows the general oxide spectra for three SiO2 samples. The high-resolution (HR) analysis of the Si 2p3 and O 1s spectra recorded [43][44] for the SiO2 samples are shown in Figure 3. Using this analysis, we determined the elemental composition
  • as well as the chemical and electronic states of the elements that exist in the SiO2 films. Although Si 2p3 shows small chemical changes, the binding energy value of 103.7 eV indicates a completely oxidized Si for the SiO2 films (Figure 3a) [43][44][45][46]. Experimental data reveal that there is
  • measured thickness values for the oxide films are shown in Table 2 and they are found to be similar to the predefined ones. The EDS distribution in all investigated samples showed the presence of chemical elements such as Zn L, Si K, and O K (Table 2). In the case of the 200 nm thick SiO2 sample, the
PDF
Album
Full Research Paper
Published 19 Apr 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • osteoblast after 3 h of adhesion to titanium. The ruffles on the cell membrane are visible. (FE-SEM SUPRA25, 1 kV, 30° angle, 100 nm Ti on Si wafer, fixation by 2.5% glutardialdehyde (GA), acetone series, critical point drying). Edge height analysis. (a) Topography of a fixed osteoblast on a 10 nm Au layer
PDF
Album
Full Research Paper
Published 12 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • the passivation of semiconducting materials, which removes surface dangling bonds and significantly reduces surface reactivity, may also provide a sufficiently insulating layer for an efficient decoupling of molecular structures from the substrate influence. Among such surfaces, hydrogen-passivated Si
  • (001):H [22][23], Si(111):H [24], and Ge(001):H [25][26][27][28] surfaces are most commonly mentioned. Iron phthalocyanines (FePc) have been studied on Si(111):H [24] and it was concluded that the molecules are weakly coupled to the substrate. Interestingly, in another study, it has been reported that
  • FePc molecules deposited at room temperature on Si(111):H serve as sources of single Fe atoms and undergo de-metalation [29]. Importantly, hydrogen-passivated Si/Ge surfaces may also act as platforms for nanostructurization by the atomically precise desorption of individual hydrogen atoms and the
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • -doped carbon dots (C-NCDs), and to 0.39 µg/µL of Si NPs in order to study the differences in the immune responses and programmed cell death induced in hemocytes [153]. It was shown that autophagy and apoptosis caused by Si NPs were reverted and experimental groups exposed to C-NCDs, CdTe QDs caused
  • autophagy, apoptosis, and necrosis in the hemocytes. Xing et al. [154] studied the outcome of introducing Si NPs in the hemolymph of the silkworm. It was reported that 3.9 µg of Si NPs was toxic to the hemocytes when compared to the groups exposed to 0.39 and 0.039 µg of Si NPs. A high dose of Si NPs (3.9
  • of nanomaterials, such as Ag NPs, CdTe QDs, and Si NPs have shown to induce an excessive production of ROS, which causes oxidative stress leading to cell apoptosis and autophagy. This review also discussed the effects of nanomaterials on the silk fibers. Reports indicate that the presence of these
PDF
Album
Review
Published 12 Feb 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • large family of hexagonal layered ternary transition-metal carbides, carbonitrides, and nitrides with the formula: Mn+1AXn where M denotes a transition metal (Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, or Ta), A denotes a group-13 or group-14 element (Al, Si, P, S, Ga, Ge, As, Cd, Ln, Sn, Tl, or Pb), and X denotes
PDF
Album
Review
Published 13 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • , and water and dried in a stream of argon. Si(100) wafers with a 300 nm thick thermal oxide layer (Silicon Quest International, USA) were treated successively with acetone/ethanol/water. Al2O3 films were grown by using an ALD system R200 (Picosun, Finland) in the thermal mode with varying numbers of
  • values of 5 and 10 nm, the remaining thickness of the Al2O3 film on FTO was in the range of 7–8 nm. This suggests that during the 5 min exposure to 1 M NaOH, approx. 9–10 nm of the ALD film was dissolved, which corresponds to a dissolution rate of approx. 108–120 nm/h. When a Si/SiO2 wafer coated with
  • (CN)6] in 0.5 M KCl demonstrating the blocking properties of 17 nm thick Al2O3 films on FTO before and after exposure to 1 M NaOH for 5 or 60 min compared to uncovered FTO. The scan rate is 50 mV/s. Si wafer coated with an Al2O3 film (17 nm) after exposure to 1 M NaOH for 1h. (a) Optical microscopy
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
PDF
Album
Review
Published 04 Jan 2021

Piezotronic effect in AlGaN/AlN/GaN heterojunction nanowires used as a flexible strain sensor

  • Jianqi Dong,
  • Liang Chen,
  • Yuqing Yang and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1847–1853, doi:10.3762/bjnano.11.166

Graphical Abstract
  • substrate, followed by a 500 nm layer of Si-doped N-GaN (the doping concentration was 5 × 1018·cm−3). The thickness of the heavily doped GaN was 1.5 μm and the Si doping concentration was 1.0 × 1019·cm−3. The thickness of the two thin N++-GaN layers was only 10 nm each with a Si concentration of 4.5 × 1019
PDF
Album
Full Research Paper
Published 10 Dec 2020

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • °C, urea hydrolysis took place reducing the nickel precursor to nickel species, which diffused into the silica layers through the mesoporous shell. The nickel species reacted with the surface hydroxides to give nickel phyllosilicate via a Ni–O–Si polymerization reaction. TiO2 (dTiO2 = 30 ± 9 nm) was
  • spectroscopy is a useful technique to determine the functional groups present in the silica and nickel phyllosilicate nanomaterials. Figure S2c in Supporting Information File 1 shows infrared absorption peaks of mSiO2 and mSiO2@NiPS at 813 and 1073 cm−1, characteristic of Si–O symmetric stretching and
  • asymmetric stretching modes in silica and silicates [49][54]. It was difficult to specify the Si–O–Si stretching bands that are distinct for 1:1 nickel phyllosilicate, due to the broad band observed at 950–1100 cm−1, which also represents the band position for Si–O–Si in silica. In the wavenumber region of
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • talc flake (green-orange shades) with a thickness of approximately 2.4 nm (corresponding to two layers) deposited on a Si–SiOx substrate (blue shades). (b) Schematic drawing indicating the morphology of the fold shown in panel (a). (c) AFM image of an atypical fold with complex morphology eventually
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • the electron beam close to the circular Si areas in which the deposition was done. Unless stated otherwise, the beam energy used during deposition was 18 kV and the beam current was varied from 12–140 pA between experiments. To achieve high spatial resolution, all deposition experiments were done in
  • dispersive X-ray analysis Energy dispersive X-ray (EDX) spectroscopy was performed using an Oxford XMax150 detector on a Zeiss Supra 55 SEM. For EDX measurements, 250 × 250 nm2 squares were deposited, thick enough to minimize the signal from the Si substrate during the analysis with a 5 keV beam. The beam
  • directional doser, which was used to increase the partial pressure of the precursor at the surface of the substrate (silicon in the case of Pt(CO)2Br2, Ru-capped Si/Mo multilayers in the case of Pt(CO)2Cl2). Deposits were produced over 12 h under steady-state deposition conditions using a 3 kV electron beam
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Mapping of integrated PIN diodes with a 3D architecture by scanning microwave impedance microscopy and dynamic spectroscopy

  • Rosine Coq Germanicus,
  • Peter De Wolf,
  • Florent Lallemand,
  • Catherine Bunel,
  • Serge Bardy,
  • Hugues Murray and
  • Ulrike Lüders

Beilstein J. Nanotechnol. 2020, 11, 1764–1775, doi:10.3762/bjnano.11.159

Graphical Abstract
  • , a body-centred tetragonal configuration (β-Sn, also called Si-II) must be formed from the initial cubic diamond silicon (Si-I) in the highly stressed region just below the tip [12]. Furthermore, in air and under ambient conditions, due to the interaction between the tip and the surface, the probe
  • . The starting material is a p-type Si substrate with relatively high ohmic resistance (1 kΩ·cm), oriented along the ⟨100⟩ direction. The first step in the process consists of forming an n-type doped buried layer (BN) on the top of the wafer (through implantation and diffusion of the doping species). A
  • ) highlights the type of doping in different Si layers, such as the BN implanted layer and the diffused doping along the deep trenches. In addition, the ∂C/∂V amplitude mapping (Figure 7b) identifies the implanted p+ anode area and reveals the diffusion shape of the BN implanted layer. sMIM-R and sMIM-C
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Absorption and photoconductivity spectra of amorphous multilayer structures

  • Oxana Iaseniuc and
  • Mihail Iovu

Beilstein J. Nanotechnol. 2020, 11, 1757–1763, doi:10.3762/bjnano.11.158

Graphical Abstract
  • external electric field reaches high values. When a negative voltage is applied, this sharp increase of the current occurs in dark and under illumination. This effect was observed for amorphous thin-film structures with different electrodes (As2S3, As2S3Gex) and amorphous HS (As2S3/Sb2S3, Si/As2S3) [14]. I
PDF
Album
Full Research Paper
Published 20 Nov 2020

Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy

  • Tatsuya Yamamoto,
  • Ryo Izumi,
  • Kazushi Miki,
  • Takahiro Yamasaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2020, 11, 1750–1756, doi:10.3762/bjnano.11.157

Graphical Abstract
  • , Himeji, Hyogo 671-2280, Japan Institute for Nanoscience Design, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan 10.3762/bjnano.11.157 Abstract The atomic arrangement of the Si(110)-(16×2) reconstruction was directly observed using noncontact atomic force microscopy (NC-AFM) at 78 K
  • between upper and lower terraces, which have not been reported using STM. These findings are key evidence for establishing an atomic model of the Si(110)-(16×2) reconstruction, which indeed has a complex structure. Keywords: atomic force microscopy (AFM); noncontact atomic force microscopy (NC-AFM); Si
  • (110); Si(110)-(16×2); Introduction The Si(110) surface, which is one of the low-index Si planes, has been attracting growing interest in the fields of industrial technology and surface science. From an industrial application perspective, it has been considered to be a promising material for p-type
PDF
Album
Letter
Published 19 Nov 2020

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • ], the fabrication of graphene nanomeshes [8], the formation of single Si nanocrystals embedded in SiO2 for single-electron transistors [9], the spatially resolved engineering of the thermal conductivity in individual Si nanowires [10], as well as the creation of nano-Josephson superconducting tunnel
  • mass-separated FIBs from a Co36Nd64 LMAIS to implant Co into Si at elevated temperatures, leading to metallic CoSi2 nanostructures down to 20 nm [13]. Ge nanowires could be grown by molecular beam epitaxy, via a vapor–liquid–solid process, on a Si substrate after formation of a regular seed array using
  • keV Ga beams on a crystalline Si sample from different studies [44][45] are plotted and fitted by a double Gaussian for comparison in Figure 6. The near-axis resolution of the He beam from a GFIS is smaller than that of the LMIS-driven Ga FIB but the beam tails lead to a comparable behavior along the
PDF
Album
Full Research Paper
Published 18 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • is cheap and abundant. Also, there are established technologies for processing Si and Si is biocompatible. Furthermore, the use of silicon for thermoelectric generator devices will make them technologically compatible with standard CMOS devices. The main requirement for the use of silicon as
  • measurement apparatus based on the guarded hot-plate technique, schematically shown in Figure 2. This apparatus has already been used in a previous publication for the measurement of the thermal conductivity of undoped silicon nanowire forests [23]. Essentially, the Si chip with the contacted nanowire forest
  • slightly doped SiNW forests, and their doping by diffusion after fabrication, is a possible route for the exploitation of nanostructured silicon for thermoelectric purposes. Procedures for the fabrication of macroscopic nanostructured-Si generators, based on interconnected p- and n-doped legs, are under
PDF
Album
Full Research Paper
Published 11 Nov 2020
Other Beilstein-Institut Open Science Activities