Search results

Search for "adsorption" in Full Text gives 837 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • simulation conditions used in this work, the adsorption of water favours the formation of defects in silicon by mixing hydrogen and oxygen atoms into the substrate. The sputtering yield of silicon is not significantly changed by the contamination, but the fraction of hydrogen and oxygen atoms that is
  • sample. The water molecules were equilibrated using the ReaxFFOH(2017) [24] potential in a fully periodic space using the NPT ensemble. Since the adsorption of water molecules on a surface is a random process, the orientation of the molecules could freely evolve. Snapshots of water equilibration can be
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • cells but to even display antiviral attachment properties [58]. Superhydrophobic surfaces inspired by the Lotus-effect® (>150° contact angle) have been found to diminish bacterial adhesion due to reduced protein surface adsorption [59][60][61]. Superhydrophobicity relies on the combination of chemical
PDF
Album
Review
Published 08 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • pollutants, such as adsorption, coagulation, filtration, and chemical and biochemical oxidation [10][11]. Advanced oxidation processes (AOPs) have recently attracted attention due to their simple operation, low cost, and potentially high effectiveness. AOPs are the technologies that use various chemical
  • presented as black, as shown in Figure 5b. They successfully increased the absorption efficiency of visible light and utilized more visible light effectively. In order to determine the specific surface area, pore size, and pore volume of the prepared perovskite oxides, the analysis of nitrogen adsorption
  • various photocatalysts prepared at pH 0 or pH 7 The standard concentration of MB aqueous solution was prepared at 20 ppm. Various LaFexNi1−xO3 perovskite oxides prepared at pH 0 were examined for dark adsorption and photocatalytic degradation. First, dark adsorption was not significant for all perovskite
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • ) functionalization with ZIKV60 aptamers. In this experiment, we used 100 mM PBS as electrolyte for gating. The π-conjugated units of the pyrene-modified ZIKV60 aptamers transfer electrons to graphene, resulting in the left-shift of the graphene transfer curve because of the aptamer adsorption. Several studies
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • aspect is the electronic coupling between the molecules and the metallic substrate. In this case, the key parameter is the adsorption energy (Ea), which is defined as the energy required to desorb a molecule from the surface. A high Ea is characteristic of molecules chemisorbed on the substrate, where a
  • relevant charge transfer between the overlayer and the substrate occurs. In contrast, a low Ea is characteristic of physisorbed molecules, for which the adsorption is mediated by the weak van der Waals interaction with the substrate. Chemisorption is the typical scenario for molecules stabilized on
  • ascribed to charge transfer from ZnTPP to the Fe(001)–p(1 × 1)O substrate. When 1 ML of C60 is added, the variation of the work function is within the experimental error, indicating a negligible charge transfer on the surface region upon C60 adsorption. The electronic properties of C60 adsorbed on ZnTPP
PDF
Album
Full Research Paper
Published 30 Aug 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • drop is not disrupted during application onto a substrate. In contrast, when the oxide skin breaks, new oxide forms at the solid–liquid interface with a substrate, which results in adhesion. Also, the wetting of a liquid Ga–In alloy has been related to the adsorption energy of gallium on three
  • different substrates (steel, gold, and Al) [13], with the wetting becoming better as the adsorption energy of gallium onto the substrate becomes more negative. In the case of Fe and Cu substrates, it was observed that liquid gallium reacts with the substrate to form an intermetallic layer at the gallium
  • the meniscus flow of the eutectic Ga–In–Sn melt upon retraction, the adsorption of a thin water layer is likely to modify the surface energy of the liquid neck upon pulling and affect the above results. The analysis of the interfacial energy from AFM adhesion measurements is thus complicated by the
PDF
Album
Full Research Paper
Published 23 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • creating meso–macro channels without destroying most of the micropores. This can be achieved by removing emulsion networks from the single crystal [116]. The obtained HKUST-1 crystals contained bimodal or trimodal pores, which facilitated adsorption and enabled a fast Friedländer reaction. When the
  • demonstrated in millimeter-sized superstructures formed by ZIF-8 or UiO-66 [131]. Owing to the porous structure of the monocrystalline coordination polymers. The dielectric constant of the particles may be changed upon adsorption of molecules such as organic vapor. This can lead to a change of the structural
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • using a reference to the peak of the surface adventitious carbon (284.8 eV) in the high-resolution spectrum of the C 1s region. The N2 adsorption−desorption isotherms were recorded at −196 °C on a Micromeritics ASAP 2020 analyzer, while the specific surface area and pore distribution curve were
  • 5.0 cm from the quartz tube reactor. The photocatalyst (10.0 mg) was dispersed in the pollutant solution (20.0 mL, 10.0 mg·L−1) and stirred in the dark for 1 h to guarantee the adsorption−desorption equilibrium. Then, the visible light was switched on, and the suspension containing photocatalyst and
  • irradiation for t hours, after the achievement of the adsorption−desorption equilibrium, and at the initial moment (10.0 mg·L−1), respectively. The photocatalytic stabilities of the cellulose-derived Bi2WO6/TiO2-NT nanocomposites on the photocatalytic reduction of Cr(VI) or degradation of RhB were confirmed
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • the scan rate suggests a surface-confined diffusion-controlled electrocatalytic process [21]. The slope of log Ipc as a function of log ν is 0.611 (>0.5), which confirms an adsorption-based reduction of PT on the modified electrode surface (Figure 7B). The reduction peak potential was shifted towards
  • on PT sensing in environmental samples. Other interfering OP (acephate, chlorpyrifos) and organochloride (dicofol, lindane) pesticides also did not significantly affect the response current of PT reduction as they have different redox potential and adsorption potential on the modified electrode
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • gradient approximated (GGA) Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional was used. Guo et al. [5] investigated the graphene/polyaniline adsorption energy of NH3, CO, NO, and H2 using DFT and molecular dynamics computations. From this, graphene/PANI is highly sensitive to NH3 in comparison
PDF
Album
Full Research Paper
Published 26 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • the Zn/Co ratio during synthesis. The composite with higher Zn content has a larger BET surface area and micropore volume but a smaller mesopore volume, as compared in Figure 5c and Supporting Information File 1, Table S1. According to the adsorption–desorption hysteresis curves, the Zn1Co4–C/CNT
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • that a local micro-convection is induced in the base fluid due to the Brownian motion of nanoparticles, which increases both mixing and heat transport within the nanofluid [16][17]. Later, several studies demonstrated that interactions between liquid atoms and nanoparticles (i.e., a liquid adsorption
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • magnetically stirred for 30 min in the dark to equilibrate the adsorption and desorption of MB on the surface of the crystallites. After switching on the UV light, samples were periodically collected and centrifuged. The concentration of the MB solution was analyzed based on the characteristic absorption peak
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • substituents compared to PHEG-Tyr nanogel [25]. This assumption is also supported by the DH dependence (Figure 3a) showing a DH maximum at pH 7.4. Adsorption and release of BSA and AAT Next, optimization studies of in vitro loading of 125I-radiolabeled BSA as a model protein and its release from PHEG-Tyr and
  • of BSA (pI 4.7) and, thus, BSA adsorption is driven by electrostatic and hydrophobic interactions [30][31]. PHEG-Tyr nanogel was incubated with three different 125I-radiolabeled BSA concentrations (1, 0.75, and 0.5 mg/mL), and the loading efficiency was found to be low, that is, 2.1% (21 µg/mL), 1.9
  • interaction [35][36]. Our observation indicates that the adsorption of 125I-radiolabeled BSA onto Nα-Lys-NG is mainly driven by hydrophobic interaction. At higher initial concentrations of 125I-radiolabeled BSA, both polypeptide nanogels, Nα-Lys-NG and PHEG-Tyr, are quickly saturated and unable to adsorb
PDF
Album
Full Research Paper
Published 22 Jun 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • a higher adsorption of analyte molecules, increasing the EF from 106 (before) to 108 (after hydrogenation) [43]. The charge transfer effect was probably increased as well since the hydrogenation introduced lattice defects that could alter the energy band structure of ZnO, promoting charge separation
  • promoted strong light confinement, and the increased number of adsorption sites due to the branched ZnO nanostructures. Despite the fact that ZnO is a non-plasmonic semiconductor material, it can elicit a degree of SERS effect via chemical enhancement of atomic vibrational modes of the analyte. Kim et al
PDF
Album
Review
Published 27 May 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • ][9]. Self-assembled monolayers (SAMs) are ordered molecular assemblies formed by the adsorption of amphiphilic organic molecules on a solid surface [10][11][12]. Self-assembled monolayers are model systems that enable a fundamental understanding of self-organization and provide a versatile path to
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • arrays were exposed to various relative humidity levels ranging from 20% to 80% (Figure 10). The obtained results show a decreasing sensor response with increasing RH% value. This change in response toward relative humidity is due to the adsorption of water molecules and an increase of charge
PDF
Album
Full Research Paper
Published 27 Apr 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • et al. [33] used molecular dynamics to compare the adsorption energies of GR-Au and GR-GR structures. The GR-GR structure has a higher adsorption energy of 307 mJ/m2. Mizuta et al. [7][35] assumed that the use of a GR-GR electrode structure could avoid the uncontrollable microscale interactions
PDF
Album
Review
Published 12 Apr 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • , poly(propylene fumarate) (PPF) nanocomposites containing BNNTs showed increased mechanical reinforcement, higher adsorption of collagen I protein, excellent cell attachment as well as ECM deposition compared to the PPF control [144]. Halloysite clay, a natural aluminosilicate material, is an
PDF
Album
Review
Published 11 Apr 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • natural gas) with high efficiency is needed. Membrane-based separation offers a great potential for online CO2 sequestration in view of its high energy efficiency, small carbon footprint, and competitive cost compared to traditional separation processes, such as distillation and adsorption [5]. The
  • intercrystalline defect formation in MOFs can have either positive or negative effects on the separation performance. Point defects and extended defects may increase the number of adsorption sites in MOFs [35], while missing linkers may provide low-resistance diffusion pathways by increasing the porosity of the
  • membranes synthesized in this work (Figure 8b). The type of MOF has an influence on the gas separation performance, for instance, CAU-1 exhibits a higher CO2 adsorption capacity than ZIF-8 [45], which may lead to a higher gas permeance. Compared with MOF mixed-matrix membranes (MMMs), ZIF-8 membranes
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • with the C 1s and Ru 3d5/2 spectra, while the O 1s peak for growth steps (i) and (iii) points to the sporadic adsorption of ethanol to the terminal TP groups [29][30]. Thus, the XP spectra prove, in addition to earlier published results based on other spectroscopic methods, that the desired wire growth
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • found that nps smaller than 100 nm produce more ROS due to their higher surface area [29]. Properties of nps such as surface charge density and zeta potential are influential in determining their reactivity, agglomeration properties, interaction with cells, stability in complex media, and adsorption of
  • got adsorbed on the nanotube surface and that the nanotopography plays an important role in their selective adsorption and maintenance of biological function [34]. It has been reported that the small size of the nanotubes seems to speed up cell adhesion by providing an effective length scale for
  • integrin clustering and focal adhesion development. In this context, Chen et al. employed the adsorption of functional proteins (bone morphogenetic protein 2 and sclerostin antibody) to modify TiO2 nanotube arrays to repair bone fractures [35]. The PC alters biodistribution, biological identity and
PDF
Album
Review
Published 14 Feb 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • [28], wound dressings [29], sound adsorption [30], cosmetics [31], and sensor devices [32][33][34]. In filtration processes, electrospun nanofibers can be employed for removing volatile organic compounds (VOCs) from the atmosphere. To protect people from bacteria, viruses, smog, and dust, nanofibers
PDF
Album
Full Research Paper
Published 07 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • remains unreacted, still imaged as a bright protrusion. There are three backbonds at each adatom site. The existence of the tilted pairs (Pair 1, Pair 2) may suggest that the adsorption sites of oxygen at the backbond site should have a certain preference. The pair corresponds to one adatom and a pentamer
  • existence of a certain oxidation pattern indicates that the preferential adsorption site should be related to the strain induced by the pre-adsorbed oxygen atoms. In the case of Si(111), it has been shown that one oxygen atom at the backbond of a similar adatom site is the common first product for oxidation
  • [20]. Hence, it is reasonable to postulate that a similar structure is formed at the adatom site on Si(113)-(3 × 2). Similarly, it is also reasonable to postulate that the oxidized position inside the pentamer site is antisymmetric to produce a tilted pair. In [18], a dissociative adsorption model of
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • functional specific nanosized additives to be used in various water remediation membrane techniques. The adsorption, filtration, photocatalytic, and bactericidal capabilities of the hybrid membranes in removing common major water pollutants such as metal ions, dyes, oils, and biological pollutants have been
  • into cross-linked polyvinylpyrrolidone (PVP) [15]. ENH membranes, along with their high porosity and high aspect ratio, possess a high permeation ability, adsorbability, and selectivity, which makes them excellent for environmental remediation, specifically for the adsorption and filtration of
  • after exiting the needle under low relative humidity. It is, thus, exposed to voltage-induced stretching only for a brief period of time. At high relative humidities, solidification happens slowly due to the competition between the evaporation of the solvent and the adsorption of water on the
PDF
Album
Review
Published 31 Jan 2022
Other Beilstein-Institut Open Science Activities