Search results

Search for "high resolution" in Full Text gives 735 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • high-resolution micrographs at a sub-nanometer level. An electron acceleration voltage of 200 kV was used. Particle size distributions were measured by using the semi-automatic mode of the software pebbles [42], assuming a spherical particle shape. The electrochemical measurements were performed in a
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • interfaces. Results The determination of the vertical adsorption heights of F4PEN in (sub)monolayers on Ag(111) relied on high-resolution core level spectra, which are shown in Figure 1 (additional XPS spectra are shown in Supporting Information File 1, Figure S1). Following the assignment of the F4PEN core
  • close to monolayer coverage. The high-resolution XPS (HR-XPS) and normal-incidence XSW (NIXSW) experiments were performed at beamline I09 at Diamond Light Source (DLS, UK) using both the soft (110–1100 eV) and hard (2.1–18 keV) X-ray beams [104][105]. Sample preparation and measurements were performed
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • concentration dependence of self-assembly was examined within the concentration range of 7.7 × 10−4 M to 4.0 × 10−5 M. For concentrations below 4.0 × 10−5 M, no self-assembly was observed. Figure 2 shows large-scale and high-resolution STM images of the different polymorphs of BA-OC14 observed at the 1
  • -phenyloctane–HOPG interface together with the proposed molecular models. Polymorph A (Figure 2a,d) is formed exclusively within the concentration range of 7.7 × 10−4 M to 1.9 × 10−4 M. This network has been reported by us earlier [45]. The high-resolution image provided in Figure 2d shows that the lamellar
  • surface coverage (≈60%), another network with a significantly different unit cell (Figure 2b,e and Table 1) was observed. This network, referred hereon as polymorph B, lacks the peculiar bright-dark contrast observed in the STM images of polymorph A. Figure 2e,h shows a high-resolution STM image of
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • gallium-ion FIBs. The resulting combined AFM–HIM instrument would, therefore, profit from the sub-nanometer lateral resolution of the HIM and the atomic resolution in the vertical axis of the AFM, proving particularly powerful for high-resolution correlative characterization of non-conductive samples
  • . With the integrated electron flood gun (FG) of the HIM providing charge neutralization, uncoated polymers and biological samples can be imaged with high resolution while the AFM would bring complementary information such as laterally resolved mechanical properties. These multiparametric measurements
  • have previously been difficult to obtain as sample preparation of such samples for SEM or TEM are often incompatible with the needs of high-resolution AFM measurements. AFM is also useful in assisting helium ion beam lithography. Many resists, including poly(methyl methacrylate) (PMMA), have higher
PDF
Album
Full Research Paper
Published 26 Aug 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • . Fe3O4 nanorods were examined using high-resolution transmission electron microscopy proving that they are single-crystalline and do not have any preferred crystallographic orientation along the axis of the rods. According to the data obtained a growth mechanism was proposed for the rods that consists of
  • obtained at a slightly acidic pH. Thus, we determined the optimum pH for nanorod preparation. High-resolution transmission electron microscopy (HRTEM) results showed that the synthesized nanorods were single crystals formed by the magnetic-field-assisted growth of small nanocrystals, whereas some amount of
  • [57]. High-resolution transmission electron microscopy (HRTEM) To prepare the specimens for HRTEM measurements, the samples were manually applied onto the lacey carbon-coated side of the 300 mesh copper grid and air-dried under ambient conditions. The particle morphology was characterized by TEM and
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • [29][30]. Hence, the He+ FIBID technique is highly recommended for direct writing of 3D nano-objects with high resolution and aspect ratio [17][19][31][32][33][34][35]. A successful example of tailored 3D nano-objects grown by He+ FIBID has been reported by Kohama and co-workers [35]. The authors
  • from the substrate to the top of the pillar [36][37]. This shows the need for future systematic experiments varying the dwell time in pulsed growth or varying the flux of precursor gas. (High-resolution) scanning transmission electron microscopy Dependence of NW inner diameter on the ion beam current
  • ) and a longitudinal (y–z) section, and a colored three-dimensional reconstruction. Microstructure Concerning the microstructure of the NWs, high-resolution scanning transmission electron microscopy (HRSTEM) images have been acquired sequentially and processed to extract the crystallographic structure
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • of the Raman peaks of crystalline Si and amorphous Si by applying tip-enhanced Raman spectroscopy, at sample positions being 8 nm apart. The local crystallinity revealed using confocal Raman spectroscopy and tip-enhanced Raman spectroscopy agrees well with the high-resolution transmission electron
  • regarding the sensitivity and the diffraction-limited optical resolution. Thus, a high-resolution technique that reveals both, the structural and the optical properties at the nanometer scale is needed to study the fraction of crystalline phases and defects within the SiNWs. Tip-enhanced Raman spectroscopy
  • growth. However, it is worth mentioning that other mechanisms of Pt-catalyzed growth of nanowires were also previously observed [29]. The overall morphology of the SiNWs was investigated by transmission electron microscopy (TEM). The high-resolution TEM investigation of the core area indicates that the
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • monolayer. High-resolution STM images recorded at 0.8 V (Figure 3c) allow for the resolution of the individual molecules and their arrangement. Each TCNQ molecule appears with back-to-back double U-shapes separated by a nodal plane. As will be discussed later, and based on previous work on TCNQ [5][23
PDF
Album
Full Research Paper
Published 20 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • the phase purity of ZnF2. Figure S6 in Supporting Information File 1 shows the SEM and transmission electron microscopy (TEM) images of ZnF2 nanorods produced in the presence of sulfur. The SEM images indicate the high yield of ZnF2 nanorods. The high-resolution TEM (HRTEM) image in Figure S6d
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • iron and gadolinium distribute uniformly across the FGDA nanocubes (Figure 2f,g). In addition, the high-resolution transmission electron microscopy (HRTEM) image (Figure 2c, inset in red) shows that the interplanar spacing within the nanocubes is 0.296 ± 0.02 nm, which corresponds to the (220) crystal
  • . Characterization of nanocubes and nanoparticles A high-resolution transmission electron microscope (HRTEM, JEM-2010F, Japan), operated at an acceleration voltage of 200 kV, was used to investigate the morphology and size of the nanocubes. Energy-dispersive X-ray spectroscopy (EDS, Oxford, X-MaxN, UK) was used to
PDF
Album
Full Research Paper
Published 08 Jul 2020

Three-dimensional solvation structure of ethanol on carbonate minerals

  • Hagen Söngen,
  • Ygor Morais Jaques,
  • Peter Spijker,
  • Christoph Marutschke,
  • Stefanie Klassen,
  • Ilka Hermes,
  • Ralf Bechstein,
  • Lidija Zivanovic,
  • John Tracey,
  • Adam S. Foster and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2020, 11, 891–898, doi:10.3762/bjnano.11.74

Graphical Abstract
  • resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol – an organic molecule with a single hydroxy group – at the calcite and magnesite (10.4) surfaces by using high-resolution 3D AFM and
  • obtained to date. Furthermore, no information on the interfacial orientation and binding configuration has been collected experimentally. Here, we report on high-resolution 3D AFM data that reveals both the lateral and the vertical solvation structure at the calcite–ethanol interface in a single data set
  • confirms the laterally alternating minima and maxima within the first layer and the oscillatory vertical density profile predicted by the MD simulations. Conclusion We combined high-resolution 3D AFM with MD simulations to characterize the solvation structure of ethanol above calcite and magnesite (10.4
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2020

Transition from freestanding SnO2 nanowires to laterally aligned nanowires with a simulation-based experimental design

  • Jasmin-Clara Bürger,
  • Sebastian Gutsch and
  • Margit Zacharias

Beilstein J. Nanotechnol. 2020, 11, 843–853, doi:10.3762/bjnano.11.69

Graphical Abstract
  • passively. In the following, this procedure is called the standard procedure. The characterization of the samples was performed using a high-resolution scanning electron microscope (SEM, Nova NanoSEM 430) from FEI. Results and Discussion Numerical results The following section is aimed at a better
PDF
Album
Full Research Paper
Published 28 May 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • interactions between SnPc molecules and the rutile surface, while DFT-based simulations combined with high-resolution STM images imply that a Sn-down geometry may be preferred as a consequence of steric adjustment between the molecular shape and the corrugated (110) surface. Experimental The experiment was
  • comparison of experimental and simulated images of SnPc molecules is presented in Figure 3. To discuss the molecular geometry on the surface, we combined RT-STM images of SnPc molecules forming a monolayer (Figure 3a) with high-resolution LT-STM images of isolated molecules. Experimental data are compared
  • show any significant difference. Scanning parameters: 50 × 50 nm2; a) It = 1.3 pA, b) It = 3.3 pA; Utip = 1 V. Scale bars: 5 nm. a, b) Set of high-resolution LT-STM images presenting SnPc molecules adsorbed onto a rutile (110) surface with c) inset image showing the varying molecular arrangement of Sn
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • an accuracy of ±0.5%. Neither impurities nor surface contaminations were detected (compare with [40]). All recorded high-resolution XPS spectra of VN and Pd1−xFex films were calibrated to the binding energies of crystalline VN at 513.6 eV and of metallic Pd at 335.0 eV [33][37], respectively
PDF
Album
Full Research Paper
Published 15 May 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • aggregates with an average diameter of 72 ± 16 nm (see Figure S9, Supporting Information File 1 for size distributions). In high-resolution TEM images of the primary small Ni NPs (Figure 2d), interplanar spacings of the lattice fringes of 0.21 nm and 0.23 nm could be measured, which corresponds to the {111
  • were conducted with the same instrument. High-resolution TEM images were recorded with an FEI Titan 80-300 transmission electron microscope [69] operated at 300 kV accelerating voltage. The microscope is equipped with an image CS corrector and a 2k × 2k GATAN UltraScan 1000 CCD. Nanoparticle size and
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • (ideally on average 1 photon/pulse); and short lifetime and thus high repetition rate (>GHz), room temperature operation, high extraction efficiency (>90%). The SPS spectral purity can be measured with high-resolution photoluminescence (PL) excitation, (PLE). Photon indistinguishability is assessed when
  • -luminescence and optical spectroscopy in deep ultraviolet [91][93][94] were used for the characterization of stacking faults and point defects. More recently an aberration-corrected high-resolution transmission electron microscopy technique has been used to resolve atomic defects in a freestanding single layer
  • in dispersed or suspended material. The SPEs are combined with high-resolution SEM to categorize emission down to a material scale of less than 20 nm. The SPEs are characterized by 3-level systems with a transition rate similar to the ones observed in h-BN flakes (k210 = 227 MHz, k310 = 529 MHz, and
PDF
Album
Review
Published 08 May 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • the 22.5° angle that is imposed on the cantilever from the AFM probe holder. The first factor is accounted for by taking low-magnification TEM images, where the main cantilever body was visible in the TEM images, followed by increasingly higher magnification TEM images to obtain a high-resolution
PDF
Album
Full Research Paper
Published 06 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • particles inside the nanocolumn array were observed by TEM. We also studied the crystal structure of the TiO2 nanocolumns. Figure 4 shows the TEM and high-resolution spectra of the nanocolumn structure. Figure 4a shows the bare TiO2 nanocolumns without Ag. It can be seen from the figure that the size of the
  • . It can be seen from the figure that tiny Ag nanoparticles are supported on the TiO2 columns. Figure 4d shows the high-resolution TEM image of the Ag nanocolumns shown in Figure 4c. After removing the noise by performing Fourier transform on the selected area using software, we can clearly see lattice
  • adhesive substrate. The high-resolution spectra of Ag, Ti, and O are shown in Figure 5b, 5c, and 5d, respectively. In the spectrum of O 1s (Figure 5b), the characteristic peak is observed at 531.8 eV. The shape of this peak is symmetrical, which is indicative of the presence of one distinct O species in
PDF
Album
Full Research Paper
Published 05 May 2020

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • Guanajuato. Ex Hacienda San Matías s/n C.P. 36020. Guanajuato, Guanajuato, México 10.3762/bjnano.11.58 Abstract In this work, a high-resolution atomic force acoustic microscopy imaging technique is developed in order to obtain the local indentation modulus at the nanoscale level. The technique uses a model
PDF
Album
Full Research Paper
Published 04 May 2020

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • of reciprocal space maps (RSM) around the pseudocubic (103) reflection that permit measuring the in-plane (a) and out-of-plane (c) lattice parameter for each layer. Both measurements were performed in a Bruker D8 ADVANCE diffractometer using a high-resolution configuration where a four-crystal Ge
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • of silver nanoparticles estimated from the TEM image. Inset: magnification of an individual composite bead. High-resolution XPS spectra of PSSAg nanobeads recorded over narrow ranges of binding energy: (A) Ag 3d, (B) S 2p region. Zeta potential of PSS (green circles), PSS with silver ions (black
  • silver nanoparticles are generated within the outer 7 nm gel shell of the particle while the polystyrene core is left intact. Next, the PSSAg nanobeads were studied with X-ray photoelectron spectroscopy (XPS). The spectrum confirms the presence of silver and sulfur in the sample. Figure 5 shows the high
  • -resolution spectra for these elements. The direct evidence for metallic silver embedded in the polymer matrix is the spin–orbit doublet recorded at 368.3 and 374.3 eV for Ag 3d5/2 and 3d3/2, respectively (Figure 5A), followed by plasmon loss peaks at 372 and 378 eV [30][31]. However, the asymmetric shape of
PDF
Album
Full Research Paper
Published 14 Apr 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • measurement shown in Figure 7. This result confirms again the important role of nitrogen in the PL response of the soybean-derived CDs. Figure 8b–f shows the deconvoluted high-resolution spectra of O 1s, N 1s and C 1s in the soybean-derived CDs. The binding energies of O 1s are 532, 533, and 533 eV for the
  • HTC-CDs, annealed-CDs and LA-CDs-10%, respectively, which are deconvoluted to C–O and C=O bonds. For the HTC-CDs, the binding energies of N 1s determined from the deconvoluted high-resolution spectrum of N 1s are 398.1, 399.3, 401.5, and 402.1 eV, which are assigned to pyridinic, amine, pyrrolic and
  • %). Schematic of the bandgaps of CDs under 360 nm excitation and the deconvolution bands (fitted with a two-Gassian function). FTIR spectra of soybean-derived carbon nanoparticles. (a) XPS survey spectra, (b) deconvoluted high-resolution spectra of O 1s, (c) deconvoluted high-resolution spectra of N 1s; and
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • Narutowicza 11/12, 80-233 Gdansk, Poland 10.3762/bjnano.11.40 Abstract Ag-based plasmonic nanostructures were manufactured by thermal annealing of thin metallic films. Structure and morphology were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution
PDF
Album
Full Research Paper
Published 25 Mar 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • characterize the surface. Ti2O3 rows appeared as bright spots in both NC-AFM and STM images observed in the same area. High-resolution NC-AFM images revealed that the rutile TiO2(110)-(1 × 2) reconstructed surface is composed of two domains with different types of asymmetric rows. Keywords: non-contact atomic
  • . High-resolution NC-AFM imaging revealed that the Ti2O3 rows are asymmetric structures. Experimental All experiments were conducted using our custom-built system combining NC-AFM, STM, and LEED operated in UHV at room temperature [29]. Nb-doped (0.05 wt %) rutile TiO2(110) substrates (Shinkosha Corp
  • feedback control was applied in frequency-modulation mode [30] with constant amplitude oscillation. The cantilever deflection was detected using an optical interferometer [31]. Since the electrostatic force due to the contact potential difference (CPD) between the tip and sample prevents high-resolution NC
PDF
Album
Full Research Paper
Published 10 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • previously, the surface oxygen functional groups are crucial for the reduction of molecular oxygen to H2O2 and hence high-resolution O 1s X-ray photoelectron spectroscopy (XPS) was carried out. The O 1s peaks of different EEG samples are shown in Figure 1a. It can be seen that the intensity of the O 1s peak
  • ≈21 to ≈10 atom % from G-M1 to G-M4 (as inferred from the XPS survey spectrum as well as the high-resolution C 1s and O 1s XPS spectra (Supporting Information File 1, Figure S1a)) [43]. The O 1s spectrum can be deconvoluted into two distinct peaks (as shown in Figure S2) centered at 532.2 eV and 533.4
  • collected and used for the quantification of the H2O2. The details of the quantification are given in Supporting Information File 1. (a) High resolution O 1s XPS spectra of different EEG samples. (b) BET isotherms of different EEG samples. The CV profiles of different EEG samples in (a) acidic (0.5 M H2SO4
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020
Other Beilstein-Institut Open Science Activities