Search results

Search for "material properties" in Full Text gives 170 result(s) in Beilstein Journal of Nanotechnology.

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

  • Daniel Kiracofe,
  • Arvind Raman and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2013, 4, 385–393, doi:10.3762/bjnano.4.45

Graphical Abstract
  • property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions
  • ) image and the so-called “phase” image. The latter is related to material properties and is frequently used to distinguish different domains or different blend components from one another. While phase imaging often provides good contrast between different materials, it is difficult to determine the exact
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013

Polynomial force approximations and multifrequency atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 352–360, doi:10.3762/bjnano.4.41

Graphical Abstract
  • account for adhesive forces in the contact regime, which we try to circumvent by using tips with small radii. While the DMT model provides sufficient insight into material properties, the extracted numerical values of the DMT parameters should not be expected to agree with values for the bulk material. In
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2013

Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films

  • Patrik Rath,
  • Svetlana Khasminskaya,
  • Christoph Nebel,
  • Christoph Wild and
  • Wolfram H.P. Pernice

Beilstein J. Nanotechnol. 2013, 4, 300–305, doi:10.3762/bjnano.4.33

Graphical Abstract
  • diamond has found a wealth of applications for the fabrication of windows that permit transmission in the long-IR or microwave regions [14]. In addition, diamond provides attractive material properties, such as biocompatibility, chemical inertness, high thermal conductivity, and mechanical hardness [15
PDF
Album
Full Research Paper
Published 07 May 2013

High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

  • Mark Cronin-Golomb and
  • Ozgur Sahin

Beilstein J. Nanotechnol. 2013, 4, 243–248, doi:10.3762/bjnano.4.25

Graphical Abstract
  • force–distance curves to parameters representing the material properties. Although contact-mechanics models can be used for a wide variety of polymer composites, block-copolymers, and biomaterials [27][28][29][30][31][32][33][34], these models are not applicable to materials with complex geometries. For
PDF
Album
Full Research Paper
Published 05 Apr 2013
Graphical Abstract
  • of the second phase contrast to material properties in the small-amplitude regime. This method, which was later implemented experimentally [3] and studied further theoretically and computationally [4][5], gave birth to a new host of multifrequency AFM techniques, which nowadays include a wide variety
PDF
Album
Full Research Paper
Published 18 Mar 2013

Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity

  • Antti Tolvanen and
  • Karsten Albe

Beilstein J. Nanotechnol. 2013, 4, 173–179, doi:10.3762/bjnano.4.17

Graphical Abstract
  • threshold pressure, depending on the material properties, is reached. In their pioneering work, Sun et al. [7] studied the extrusion of Ag nanoparticles experimentally and attributed the plastic flow to dislocation activity, based on a combination of simulation results on Pt showing traces of dislocation
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2013

Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

  • Jeffrey C. Williams and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2013, 4, 87–93, doi:10.3762/bjnano.4.10

Graphical Abstract
  • a single 2-dimensional (2D) surface scan. Although signal-to-noise ratio limitations can currently prevent the accurate experimental implementation of the 4D method, and the extraction of rate-dependent material properties from the force maps is a formidable challenge, the spectral inversion method
PDF
Album
Full Research Paper
Published 07 Feb 2013

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

  • Jannis Lübbe,
  • Matthias Temmen,
  • Sebastian Rode,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 32–44, doi:10.3762/bjnano.4.4

Graphical Abstract
  • first and second harmonic mode are determined by measuring resonance curves and fitting the amplitude response function to the data as described in [9]. This procedure also yields quality factors Qn, while the stiffness kdim is calculated from cantilever dimensions and material properties [10] and used
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2013

Growth behaviour and mechanical properties of PLL/HA multilayer films studied by AFM

  • Cagri Üzüm,
  • Johannes Hellwig,
  • Narayanan Madaboosi,
  • Dmitry Volodkin and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2012, 3, 778–788, doi:10.3762/bjnano.3.87

Graphical Abstract
  • [21][37][38][40]. Another source of error in mechanical measurements of thin films is the substrate effect [37]. Although film stiffening due to the hard substrate is a real effect, it should be eliminated in the calculations since it does not reflect the material properties of the coating and may not
PDF
Album
Full Research Paper
Published 21 Nov 2012

Controlled positioning of nanoparticles on a micrometer scale

  • Fabian Enderle,
  • Oliver Dubbers,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 773–777, doi:10.3762/bjnano.3.86

Graphical Abstract
  • ; Introduction Nanoparticles (NPs) still play a major role in nanoscience from both an application and a fundamental point of view. Common to both aspects is the interest in possible new properties when reducing the sample size of a material down to the nanoscale. Quite generally, all material properties display
PDF
Album
Full Research Paper
Published 20 Nov 2012

Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control

  • Gnanaprakash Dharmalingam,
  • Nicholas A. Joy,
  • Benjamin Grisafe and
  • Michael A. Carpenter

Beilstein J. Nanotechnol. 2012, 3, 712–721, doi:10.3762/bjnano.3.81

Graphical Abstract
  • films to the gases at temperatures of 500 °C in a background of dry air. Characterization of the samples by XRD and SEM enabled the correlation of material properties with the differences in the CO- and H2-induced LSPR peak shifts, including the relative desensitization towards NO2. Sensing
  • has been performed for the first time. The resulting material properties of these films have produced a unique sensing dependence, which has enabled an enhanced detection of H2 by a factor of 4 in comparison to CO. Such a strong difference in the detection of these two reducing gases is significant
  • selective detection of CO and H2 for many types of metal-oxide-based sensing applications is problematic since they both react readily with the oxygen anion species and produce a similar response on the transducer of interest [1]. The results from this current study show that by tuning the material
PDF
Album
Full Research Paper
Published 31 Oct 2012

Assessing the plasmonics of gold nano-triangles with higher order laser modes

  • Laura E. Hennemann,
  • Andreas Kolloch,
  • Andreas Kern,
  • Josip Mihaljevic,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2012, 3, 674–683, doi:10.3762/bjnano.3.77

Graphical Abstract
  • dielectric materials such as the glass and silicon is inevitably missing. 2) The foci at the air/silicon and air/glass interfaces are different due to the different material properties. 3) This simple convolution approach accurately describes the scattering at single nanostructures but completely neglects
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2012

Wavelet cross-correlation and phase analysis of a free cantilever subjected to band excitation

  • Francesco Banfi and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2012, 3, 294–300, doi:10.3762/bjnano.3.33

Graphical Abstract
  • ; Introduction Atomic force microscopy (AFM) has made important progresses towards the characterization of material properties at the nanoscale (elastic constants, force interactions, friction, molecular interactions, to name only a few) by means of dynamic techniques that extended the microscope capabilities
  • spectral distribution upon impact, captured with wavelet amplitude and phase analysis, is thus a fingerprint of the material properties. This information can be used, at the very least, to determine compositional contrast. A final remark is due concerning the effect of noise (thermal and environmental
  • characterization of material properties on the nanoscale. The wavelet correlation technique allows one to measure the phase relationship between driver force and cantilever response in complex excitation schemes. The complete time–frequency picture of the phase evolution can be exploited as an important tool to
PDF
Album
Full Research Paper
Published 29 Mar 2012

Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique

  • Zsolt Majzik,
  • Martin Setvín,
  • Andreas Bettac,
  • Albrecht Feltz,
  • Vladimír Cháb and
  • Pavel Jelínek

Beilstein J. Nanotechnol. 2012, 3, 249–259, doi:10.3762/bjnano.3.28

Graphical Abstract
  • physical, chemical and material properties of surfaces and nanostructures at the atomic scale. STM is based on the detection of the tunneling current between a probe and a sample, and it turned quickly into a standard technique widely used to characterize conductive surfaces and to modify objects at the
PDF
Album
Full Research Paper
Published 15 Mar 2012

Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus

  • Elena T. Herruzo and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2012, 3, 198–206, doi:10.3762/bjnano.3.22

Graphical Abstract
  • method enables the simultaneous recording of several material properties and, at the same time, it also increases the sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of the fractional derivative of the interaction force. We
  • or integration is dictated by the difference between the amplitude of oscillation and the length scale of the interaction. Successful approaches to reconstruct material properties in a quantitative way came along with the development of novel AFM techniques, such as scanning probe accelerometer
PDF
Album
Full Research Paper
Published 07 Mar 2012

Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

  • Philipp Comanns,
  • Christian Effertz,
  • Florian Hischen,
  • Konrad Staudt,
  • Wolfgang Böhme and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2011, 2, 204–214, doi:10.3762/bjnano.2.24

Graphical Abstract
  • and any macroscopic geometric parameter of the scales in the three investigated species (data not shown). Thus, either material properties or the micro ornamentation of the scales induce the high wettability. Contact angle and microscopic morphology To quantify the wetting properties we attempted to
PDF
Album
Supp Info
Full Research Paper
Published 13 Apr 2011

Infrared receptors in pyrophilous (“fire loving”) insects as model for new un-cooled infrared sensors

  • David Klocke,
  • Anke Schmitz,
  • Helmut Soltner,
  • Herbert Bousack and
  • Helmut Schmitz

Beilstein J. Nanotechnol. 2011, 2, 186–197, doi:10.3762/bjnano.2.22

Graphical Abstract
  • beetles and bugs Structure and material properties of photomechanic IR receptors Structure and function of photomechanic insect IR sensillae have been most studied in Melanophila beetles. As a special behavioural feature, beetles of both sexes approach forest fires because their brood depends on burnt
  • coefficient, water is not an optimal liquid. Hydrocarbons such as n-pentane and toluene, as well as methanol, which are also used as fluids in thermometers, are more appropriate. Table 1 shows the material properties of different hydrocarbons and carbon dioxide in comparison to water. The thermal expansion
  • Golay sensors yields different results due to the different material properties, in particular density ρ, heat capacity cp and the coefficients β, κ, α in Equation 7. For a better comparison with the water-filled cavity, it is also assumed that a thin zone due to a thin absorbing film on the inner glass
PDF
Album
Full Research Paper
Published 30 Mar 2011

Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals

  • Bert Stegemann,
  • Matthias Klemm,
  • Siegfried Horn and
  • Mathias Woydt

Beilstein J. Nanotechnol. 2011, 2, 59–65, doi:10.3762/bjnano.2.8

Graphical Abstract
  • integrity, allows for relating frictional and electronic material properties at the nano scale. This behavior makes the vanadium Magnéli phases interesting candidates for technology, e.g., as intelligent devices or coatings where switching of adhesion or friction is desired. Keywords: adhesion force
  • Johnson–Kendall–Roberts (JKR) model [19]. These two models improved the Hertzian theory [18] by including the effect of adhesion and present the limiting cases of more general contact theories by Maugis [32]. Both models have in common that the pull-off-force is independent of the elastic material
  • properties but is essentially a linear function not only of the sphere radius but also of the surface energy of the sample. At the MIT the crystal structure of the Magnéli phases is distorted resulting in a slightly higher density in the metallic phase [33] and an increase of the atomic density at the
PDF
Album
Full Research Paper
Published 27 Jan 2011

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • [20]. The upper limit for a single domain [~(A/2K)1/2] is determined by the material properties: the exchange stiffness (A) and the anisotropy constant (K). For most magnetic materials (e.g., ferrite and iron), MNPs with a diameter <20 nm will have a single domain with magnetic moments aligned in a
PDF
Album
Review
Published 16 Dec 2010

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • , interface effects gain importance until below a critical diameter dc, the formation of domains is energetically less favorable. For spherical particles, this critical diameter dc depends on various material properties such as the exchange constant A, the effective anisotropy constant Keff and the saturation
PDF
Album
Review
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities