Search results

Search for "self assembly" in Full Text gives 319 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • rational design, the self-assembly of DNA can be brought into almost any shape with nanometer-scale precision and accuracy. Examples of such structures are one-dimensional (1D) [4][5][6][7], two-dimensional (2D) [8][9][10][11] and three-dimensional (3D) [12][13][14][15] nanostructures with diverse and
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Expanding the molecular-ruler process through vapor deposition of hexadecanethiol

  • Alexandra M. Patron,
  • Timothy S. Hooker,
  • Daniel F. Santavicca,
  • Corey P. Causey and
  • Thomas J. Mullen

Beilstein J. Nanotechnol. 2017, 8, 2339–2344, doi:10.3762/bjnano.8.233

Graphical Abstract
  • architectures over large areas in conjunction with molecular self-assembly, which enables precise control over the physical and chemical properties of small local features. The molecular-ruler process, which most commonly uses mercaptoalkanoic acids and metal ions to generate metal-ligated multilayers, can be
  • lithography [12][13]. One promising strategy for such fabrication utilizes top-down lithography to create complex architectures over large areas in conjunction with molecular self-assembly, which enables precise control over the physical and chemical properties of the small features [1][2]. The molecular
  • -ruler process is a notable example of this hybrid approach as it couples conventional patterning methods with molecular self-assembly [14]. The molecular-ruler process can be employed to form nanogaps between registered metal surface features that have been generated using conventional lithographic
PDF
Album
Supp Info
Letter
Published 07 Nov 2017

Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates

  • Jingran Zhang,
  • Yongda Yan,
  • Peng Miao and
  • Jianxiong Cai

Beilstein J. Nanotechnol. 2017, 8, 2271–2282, doi:10.3762/bjnano.8.227

Graphical Abstract
  • glass. A further advantage is that laser light can pass through the polymer substrate and reach the nanoparticle layer to activate the plasmon resonance, which generates the enormous SERS enhancement. A SERS substrate with good transparency and flexibility was prepared as a self-assembly of gold
PDF
Album
Full Research Paper
Published 01 Nov 2017

Ta2N3 nanocrystals grown in Al2O3 thin layers

  • Krešimir Salamon,
  • Maja Buljan,
  • Iva Šarić,
  • Mladen Petravić and
  • Sigrid Bernstorff

Beilstein J. Nanotechnol. 2017, 8, 2162–2170, doi:10.3762/bjnano.8.215

Graphical Abstract
  • over 20 nm in diameter, show no spatial ordering, while the periodic structure of the ML was completely destroyed. The results presented here demonstrate a self-assembly process of tantalum nitride NPs, the morphological properties of which depend on the preparation conditions. This can be used as a
  • generic procedure to realize highly tunable and designable optical properties of thin films containing transition-metal nitride nanocrystals. Keywords: nanocomposites; multilayers; refractory plasmonics; self-assembly; Ta2N3 nanoparticles; Introduction Metallic nanoparticles (NPs) can confine visible
  • isolated nitride NPs within thin dielectric layers. An emphasis is placed here on the control of size and spatial arrangement of NPs, which should then ensure the desired optical properties. This is achieved by using reactive magnetron sputtering and the deposition procedure we already used for the self
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2017

Ester formation at the liquid–solid interface

  • Nguyen T. N. Ha,
  • Thiruvancheril G. Gopakumar,
  • Nguyen D. C. Yen,
  • Carola Mende,
  • Lars Smykalla,
  • Maik Schlesinger,
  • Roy Buschbeck,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Michael Mehring and
  • Michael Hietschold

Beilstein J. Nanotechnol. 2017, 8, 2139–2150, doi:10.3762/bjnano.8.213

Graphical Abstract
  • esterification of benzene-1,4-diboronic acid and triphenylene-2,3,6,7,10,11-hexol to a 1,3,2-dioxaborole heterocycle has been studied by Zwaneveld et al. [19]. Trimesic acid (TMA) has become the “drosophila melanogaster molecule” for studies of self-assembly at crystalline surfaces both under UHV conditions [20
  • the self-assembly of the synthesized monoester (see Supporting Information File 1) dissolved in undecanol as a reference experiment. The monoester was synthesized according to literature [36]. Figure 7 shows a self-assembled pattern of the synthesized monoester deposited at the HOPG–undecanol
  • based on TMA, this could lead to 3- and/or 6-fold symmetric networks in contrast to 4-fold symmetric networks which have been already fabricated based on porphyrines. Conclusion In summary we have investigated the molecular self-assembly from a solution of TMA in undecanol at the HOPG–undecanol
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • to produce artificial nacre is usually based on a self-assembly process involving clay nanosheets (nanoclays) and polymers. In general, the dispersed polymer-coated nanoclays naturally organize by liquid removal, leading to an organic-inorganic multi-layered assembly, the so-called brick-and-mortar
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • experiments. Thus, this observation is in agreement with Liu’s electrostatic hypothesis [9]. We note that recently an electrostatic self-assembly seeding of monosized individual diamond nanoparticles (obtained by a detonation method) on silicon dioxide surfaces has been reported [51]. Although the latter
  • study employed an aqueous dispersion of positively charged NDs, the silica surface is expected to be charged negatively at normal pH (IEP = 3.9, [50]) providing the same short-range electrostatic forces responsible for the ND surface self-assembly. The EIP of SS304 surfaces, however, is somewhat acidic
PDF
Album
Full Research Paper
Published 29 Sep 2017

Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

  • Laura Evangelio,
  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Michaela Gorgoi,
  • Francisco Miguel Espinosa,
  • Ricardo García,
  • Francesc Pérez-Murano and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 1972–1981, doi:10.3762/bjnano.8.198

Graphical Abstract
  • the block copolymers. We have chosen hard X-ray high kinetic energy photoelectron spectroscopy as an exploration technique because it provides information on the electronic structure of buried interfaces. The outcome of the characterization sheds light onto key aspects of directed self-assembly
  • : grafted brush layer, chemical pattern creation and brush/block co-polymer interface. Keywords: block copolymer; chemical guiding pattern; directed self-assembly; thin film; X-ray photoemission spectroscopy; Introduction Directed self-assembly (DSA) of block copolymers (BCPs) is a chemical-based
  • [5][6]. When the BCP self-assembly is used in combination with surface prepatterning, aligned structures of alternative phases of the blocks can be obtained. This is the principle of DSA. The main advantages are a relaxation of the resolution requirements of traditional lithography methods, as the
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • nanospheres were first fabricated by Kowaleski et al. [31] via successive shell crosslinking, oxidization and carbonization of the micelles resulting from the self-assembly of PAN-b-poly(acrylic acid) (PAA) block copolymer in water. The crosslinked shell can retain the micelle structure during the heat
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene

  • Pavel L. Padnya,
  • Irina A. Khripunova,
  • Olga A. Mostovaya,
  • Timur A. Mukhametzyanov,
  • Vladimir G. Evtugyn,
  • Vyacheslav V. Vorobev,
  • Yuri N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2017, 8, 1825–1835, doi:10.3762/bjnano.8.184

Graphical Abstract
  • feature of the compounds is the pronounced dependence of their spectral (emission and chiroptical) properties on the polarity of the solvent and the length of the linker between the macrocyclic and fluorophore parts of the molecule. Keywords: fluorescence; nanoparticles; self-assembly; thiacalixarene
  • ][8]. Similarly, supramolecular particles can consist of various organic or inorganic components. However, most of the fluorescent water-soluble nanoparticles described in the literature are metal-based (silver, gold, copper, etc.) [9][10][11][12]. Noncovalent self-assembly is a promising approach for
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2017

Non-intuitive clustering of 9,10-phenanthrenequinone on Au(111)

  • Ryan D. Brown,
  • Rebecca C. Quardokus,
  • Natalie A. Wasio,
  • Jacob P. Petersen,
  • Angela M. Silski,
  • Steven A. Corcelli and
  • S. Alex Kandel

Beilstein J. Nanotechnol. 2017, 8, 1801–1807, doi:10.3762/bjnano.8.181

Graphical Abstract
  • , as well as those formed during the deposition of 9-fluorenone, which does not exhibit this anomalous clustering behavior. Keywords: metastable clusters; 9,10-phenanthrenequinone; scanning tunneling microscopy; self-assembly; Introduction The goal of crystal engineering is to utilize a combination
  • of intermolecular interactions, molecule–substrate interactions and growth conditions to produce a desired mesoscale or nanoscale structure through self-assembly [1][2]. Generally, this involves a careful selection of these interactions to produce an equilibrium supramolecular assembly that has the
  • desired two- or three-dimensional structure [3][4][5][6][7][8][9]. While this technique has been shown to be quite effective at achieving this goal, it is limited to geometries allowed by crystalline structures. Self-assembly under conditions far from equilibrium, under kinetic control, can produce a
PDF
Album
Full Research Paper
Published 30 Aug 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to
  • of those ensembles of (metallo)porphyrins in materials science is discussed. Keywords: atomic force microscopy; magneto-optical Kerr effect spectroscopy; scanning tunnelling microscopy and spectroscopy; self-assembly; surface-confined 2D polymerization; transport properties; Review Introduction
  • lithography [22][23]) is to functionalize the (metallo)porphyrins with terminal groups that allow their self-assembly on surfaces. Self-assemblies, giving rise to well-defined long-range ordered lateral structures, are frequently reported [24][25][26][27][28]. For example, in case that (metallo)porphyrins
PDF
Album
Review
Published 29 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • known as chemical-modified graphene [51]. The schematic illustration of RGO preparation from graphite is shown in Figure 2. The composite formation of graphene with semiconductor materials has been reported by various methods, such as hydrothermal/solvothermal [52], sol−gel [53], self-assembly [54
  • growth of nanoparticles and hence the resultant photocatalytic materials are chemically bonded with each other [53]. This method has been successfully used in the in situ preparation of various graphene–semiconductor nanocomposites, such as TiO2 on GO sheets [57]. Self-assembly is a very important method
  • , wherein micro- and nanostructures assemble spontaneously by supramolecular interactions to form larger functional units [58]. This self-assembly of nanoparticles is very useful for various applications. In the surfactant-assisted ternary self-assembly of metal oxides with functionalized graphene sheets
PDF
Album
Review
Published 03 Aug 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • are formed from unprotected D,L-tripeptides bearing the Phe-Phe motif and nitrogen-doped carbon nanodots (NCNDs) are promising materials for biological use. In this work, they were combined to obtain luminescent, supramolecular hydrogels at physiological conditions. The self-assembly of a tripeptide
  • with narrower diameter distribution. Keywords: carbon nanodots; composites; hydrogels; nanomaterials; peptide self-assembly; Introduction Carbon nanodots (CNDs) are quasi-spherical nanoparticles with a diameter less than 10 nm. They are a very interesting class of nanocarbons because of their
  • highly useful due to the low cost and simplicity of synthesis, as opposed to longer peptides that require solid-phase-peptide synthesis [23]. The most typical approach employs N-capped short peptides, especially whereby the N-capping group is a hydrophobic, aromatic moiety that assists self-assembly in
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • cm2/V·s, was obtained for vacuum as a dielectric [38]. The deterioration of the dielectric/semiconductor interface was revealed to be due to charge trapping at that interface. This effect could be controlled by an application of self-assembly monolayers (SAM) that significantly reduce the number of
PDF
Album
Review
Published 28 Jul 2017

Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands

  • Martin Börner,
  • Laura Blömer,
  • Marcus Kischel,
  • Peter Richter,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Pablo F. Siles,
  • Maria E. N. Fuentes,
  • Carlos C. B. Bufon,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Daniel Breite,
  • Bernd Abel and
  • Berthold Kersting

Beilstein J. Nanotechnol. 2017, 8, 1375–1387, doi:10.3762/bjnano.8.139

Graphical Abstract
  • , prevent the packing and self-assembly of the hydrocarbon chains. The smaller film thickness of 7 is attributed to the specific coordination mode of the coligand. Results of preliminary transport measurements utilizing rolled-up devices are also reported. Keywords: ambidentate ligands; chemisorption; gold
  • part of the coligand to the Au surface is likely. The smaller film thickness of 7 would be consistent with this in view of the proposed absorption model. Also, in the absence of packing and self-assembly of hydrocarbon chains, a coplanar binding of alkane thiol to gold is possible [62]. It is likely
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2017

Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles

  • Christoph Göbel,
  • Ottokar Klimm,
  • Florian Puchtler,
  • Sabine Rosenfeldt,
  • Stephan Förster and
  • Birgit Weber

Beilstein J. Nanotechnol. 2017, 8, 1318–1327, doi:10.3762/bjnano.8.133

Graphical Abstract
  • (bpea)]n@BCP while pronounced differences are observed in the case of [FeLeq(bpey)]n@BCP nanoparticles. Keywords: block copolymer; composite; nanoparticles; self-assembly; spin crossover; Introduction Nanomaterials and especially nanocomposites of coordination polymers (CPs) and (porous) coordination
  • size control of CPs [13]. BCPs form micellar structures through self-assembly in specific solvents and can therefore be used as nanoreactors [14][15][16]. Using this approach, a very controlled miniaturisation of coordination polymers or networks can be envisioned, provided it is easily transferable to
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2017

Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts

  • Vineeth Kumar Bandari,
  • Lakshmi Varadharajan,
  • Longqian Xu,
  • Abdur Rehman Jalil,
  • Mirunalini Devarajulu,
  • Pablo F. Siles,
  • Feng Zhu and
  • Oliver G. Schmidt

Beilstein J. Nanotechnol. 2017, 8, 1277–1282, doi:10.3762/bjnano.8.129

Graphical Abstract
  • smooth organic layer or self-assembly monolayer has larger contact area when the tube lands on top, while nanopyramid geometry restricts the contact area only within the limited peaks’ surface which can touch the tube. Due to geometry deviation of single nanopyramid structure, it is quite challenging to
  • conductance increases non-linearly and with decreasing temperature the conductance decreases correspondingly. It is worthy to compare here with the diodes consisting of self-assembly monolayer contacted with rolled-up tube electrodes, which is previously reported by some of the authors of this contribution
PDF
Album
Letter
Published 19 Jun 2017

Characterization of ferrite nanoparticles for preparation of biocomposites

  • Urszula Klekotka,
  • Magdalena Rogowska,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2017, 8, 1257–1265, doi:10.3762/bjnano.8.127

Graphical Abstract
  • nature of ferrites and difficulties in obtaining a sufficient surface coverage by surfactants. On the other hand, the preparation of the samples for TEM actually disturbs the functionality of primarily used surfactants, which can no longer maintain the separation of the particles. The lack of self
  • -assembly also causes worse particle separation, as seen in the TEM images. It is also observed that after modification of the inorganic core, the size distribution increases in comparison to Fe3O4 nanoparticles (Table 1), while the average size of the ferrite core decreases. This suggests that Co, Mn, and
PDF
Album
Full Research Paper
Published 13 Jun 2017

Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

  • Benjamin Baumgärtner,
  • Hendrik Möller,
  • Thomas Neumann and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2017, 8, 1145–1155, doi:10.3762/bjnano.8.116

Graphical Abstract
  • fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. Keywords: biomimetic silicification; carbon fiber; self-assembly; silica nanotubes; sol–gel process
  • between the polyamine and the metal ions do not block the LPEI crystal growth, but largely change the crystalline morphology [27]. A prominent feature of this polyamine mediated biomimetic silicification process is the capability of LPEI to undergo self-assembly on arbitrary substrates. A sufficient
  • immobilized at the carbon fiber surface either by a covalent linkage or by a self-assembly process of linear polyamines, i.e., LPEI. The covalent linkage of short-chain amines to the carbon fiber surface has already been reported in literature and it was shown that a high surface amine concentration of carbon
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications. Keywords: dewetting; metal thin films; nanoimprint; nanoparticles; self-assembly; Findings Thin films on nonreactive solid surfaces, having a high surface area relative to their
  • as a functional layer. Thus, the applicability of a self-assembly technique that uses dewetting largely depends on how it can be combined with appropriate template materials that have both functionality and dewettability. In this regard, nanoimprint lithography (NIL) is expected to be an effective
PDF
Album
Letter
Published 12 May 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • polymers (ELPs) or recombinamers (ELRs), which are excellent example of materials that exhibit self-assembly and self-organization [27][28][29]. The majority of ELPs or ELRs consist of simple amino-acid consensus epitopes that are also present in natural elastin, such as (VPGXG)* (see Table 1 for details
  • fibrillar morphology. It is known that ELRs undergo hierarchical self-assembly producing a fibrillar structure [27][30][47]. For example, poly(VPGVG) and its analog poly [fv(VPGVG), fx(VPGKG)] (0.1 ≤ fx ≤0.2, fv + fx = 1) interact hydrophobically and self-assemble into nanofilaments that align in parallel
  • disassembling ELPs and ELRs [27][29]. Recently, the self-assembly properties of ELRs have been combined with the mineralization capacity of SNA15 using such a biotechnology approach [13]. In that study, Misbah et al. demonstrated that ELRs cannot control the formation of CP in the absence of SNA15. In addition
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • applications [165]. This aerogel structure exhibits excellent rate capability and outstanding long-term cyclic stability at high current densities. Wang et al. have introduced a solvothermal-induced self-assembly approach to construct the monolithic 3D Fe2O3 and GS hybrids, which have excellent prolonged
  • [188]. Guo et al. prepared Co/CoO–graphene by self-assembly of Co NPs on the surface of graphene. This hybrid has similar activity as and better stability than commercial Pt NP catalyst supported on carbon (C–Pt) NPs and may serve as an alternative to C–Pt catalysts for the ORR in alkaline solution
PDF
Album
Review
Published 24 Mar 2017

Calculating free energies of organic molecules on insulating substrates

  • Julian Gaberle,
  • David Z. Gao and
  • Alexander L. Shluger

Beilstein J. Nanotechnol. 2017, 8, 667–674, doi:10.3762/bjnano.8.71

Graphical Abstract
  • insulating substrates where atomic force microscopy (AFM) provides vital information on film structure and growth modes. Non-contact (NC)-AFM has provided rich information on the adsorption, self-assembly and film structure of various organic molecules on insulators [15][16][17][18][19][20][21]. The current
  • ]. In self-assembly processes, the right balance between molecule–molecule (MM) and molecule–surface (MS) interactions is critical to achieve large domains of ordered films. However, forming a molecular complex or a 2D film structure from freely rotating and translating molecules results in a loss in
  • entropy as degrees of freedom within the molecules become constrained. This means that free energies can vary significantly from calculated enthalpy values, which may have a direct impact on our understanding of the balance of interactions that govern self-assembly. Methods to compute the free energy from
PDF
Album
Full Research Paper
Published 21 Mar 2017

Computing the T-matrix of a scattering object with multiple plane wave illuminations

  • Martin Fruhnert,
  • Ivan Fernandez-Corbaton,
  • Vassilios Yannopapas and
  • Carsten Rockstuhl

Beilstein J. Nanotechnol. 2017, 8, 614–626, doi:10.3762/bjnano.8.66

Graphical Abstract
  • experimental data for the dispersive permittivity of silver [43]. Such objects can be fabricated in large quantities by self assembly methods, e.g., by connecting commercially available metal nanospheres with a linker molecule [44]. We set N = 2, because the higher orders do not contribute notably. For general
PDF
Album
Correction
Full Research Paper
Published 14 Mar 2017
Other Beilstein-Institut Open Science Activities