Search results

Search for "REACH" in Full Text gives 677 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • reach the detector. In HIM, the emitted secondary electrons already have low energy, which results in a strong edge and topography contrast. Furthermore, the low energies of the secondary electrons in a HIM produce excellent contrast due to changes in the work functions of the materials. An interesting
PDF
Album
Review
Published 04 Jan 2021

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • effective Kondo fluctuations reach a value of (3/4)(e2/h) and the contribution of the fourth channel is negligible. At the SU(2) points, two of the partial conductances take the unitary limit e2/h. Figure 11d shows partial conductances of the SU(4) Kondo effect occurring for transverse magnetic fields. They
PDF
Album
Full Research Paper
Published 23 Dec 2020

Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector

  • Eduardo Serralta,
  • Nico Klingner,
  • Olivier De Castro,
  • Michael Mousley,
  • Santhana Eswara,
  • Serge Duarte Pinto,
  • Tom Wirtz and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2020, 11, 1854–1864, doi:10.3762/bjnano.11.167

Graphical Abstract
  • . Since the extension arm is attached at 45°, the stage has to be tilted so that the sample can be aligned with the column axis. In order to allow the transmitted particles to reach the detector, we removed the sidewall of the cradle of the current stage. With a new dedicated stage design (currently under
  • construction), the detector can reach a minimum distance to the sample of 50 mm, achieving maximum polar angles of 25° for any azimuthal angle, or up to 33° in the corners of the square detector. The detector support is designed in a way that it can be adapted and installed into the commercially available
  • be 3.51°, for the ⟨110⟩ directions, calculated using an adaptation of [40]. This is also the direction where the minimum backscattering yield (maximum transmission) is expected. Instead, the ions enter the crystal and, after some deviation due to random scattering, they reach directions in which they
PDF
Album
Full Research Paper
Published 11 Dec 2020

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • temperature of the solution was maintained at 25 °C throughout the experiment. A methylene violet (MV) solution (10 ppm; 100 mL) was placed in the reactor followed by the addition of 0.05 g of the catalyst. The solution was magnetically stirred in the dark for 1 h to reach the adsorption–desorption
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • both the diameter and the height increase. At a later stage, when the diameter tends to saturate because secondary electrons generated in the pillar cannot reach the surface to contribute to further lateral growth, the volume increases more or less linearly with height and thus linearly with dose [29
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • reach 12, which corresponds to the ideal crystalline state of a hexagonal close-packed lattice, indicating an amorphous-like structure of cobalt nanofilms. Variations in the coordination number within the intermediate niobium layer are more significant. When approaching the contact regions with cobalt
  • . When the deposited atoms reach the substrate surface, the effect of reducing the flux is leveled. A decrease in the nanosystem transverse size by a factor of four also did not affect the nanosystem layer composition, which can be seen in Figure 9. The dependence of the niobium and cobalt fractions
PDF
Album
Full Research Paper
Published 24 Nov 2020

Absorption and photoconductivity spectra of amorphous multilayer structures

  • Oxana Iaseniuc and
  • Mihail Iovu

Beilstein J. Nanotechnol. 2020, 11, 1757–1763, doi:10.3762/bjnano.11.158

Graphical Abstract
  • the incident visible light to reach the other layers with a bandgap energy of Eg ≈ 2.0 eV [12][13] and with a thicknesses of d ≈ 500 nm for Ge0.09As0.09Se0.82 and d ≈ 1000 nm for As0.40S0.30Se0.30. Figure 2 shows that the amorphous film Ge0.30As0.04S0.66 is highly transparent to incident light in the
PDF
Album
Full Research Paper
Published 20 Nov 2020

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • ]. In particular, light elements in the mass range of m = 1–28 u (hydrogen to silicon) and energies between a few and 80 kiloelectronvolts are of special interest. The combination of this energy range with the particular mass range allows one to reach single-digit nanometer and even sub-nanometer
PDF
Album
Full Research Paper
Published 18 Nov 2020

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • strongly enhanced at specific adsorption sites, which we refer to as “hot spots”. On Cu(111), the molecules can reach these hot spots only by temperature-induced diffusion. Whereas, after deposition at 20 K, the molecules stay statistically distributed on the surface, and only a small fraction is located
  • , while at lower coverages its formation requires annealing. Hence, we assign FLA to PTCDA molecules at surface defects. In a sub-monolayer, the molecules can reach these defects via diffusion, which has to be temperature-induced. For a higher coverage, the sites at defects are already populated during
  • and stems from molecules at surface defects. To enable the molecules to reach these defects, a temperature-induced diffusion is necessary at sub-monolayer coverage. FLB (ca. 18,300 cm−1) stems from ordered domains in the first PTCDA layer. It can only form under deposition at a sample temperature
PDF
Album
Full Research Paper
Published 03 Nov 2020

Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation

  • Shuai Yang,
  • Xiaojing Cui,
  • Rui Guo,
  • Zhiyi Zhang,
  • Shengbo Sang and
  • Hulin Zhang

Beilstein J. Nanotechnol. 2020, 11, 1655–1662, doi:10.3762/bjnano.11.148

Graphical Abstract
  • attenuation (Figure 3d). The output voltage increases with stronger bending, that is, smaller bending angles φ (Figure 3e). The effective working range of the sensor under bending is 120° to 60°, and its angular resolution can reach 0.006 V/° at 1 wt % GR. Figure 3g shows the measured waveform of a device
PDF
Album
Full Research Paper
Published 02 Nov 2020

Amorphized length and variability in phase-change memory line cells

  • Nafisa Noor,
  • Sadid Muneer,
  • Raihan Sayeed Khan,
  • Anna Gorbenko and
  • Helena Silva

Beilstein J. Nanotechnol. 2020, 11, 1644–1654, doi:10.3762/bjnano.11.147

Graphical Abstract
  • approx. 1 mTorr at a temperature of 675 K for 10 min to reach the crystalline phase (annealing profile shown in Figure 2a). The electrical measurements were performed at room temperature. Electrical pulses, generated by an arbitrary function generator (Tektronix AFG 3102), were applied to the cells; a
  • of the Rcrystalline and Rprogrammed values for the 25 measured GST cells. Due to intrinsic programming variability and process variations observed from cell to cell, the number and the amplitude of the applied voltage pulses required to reach Rprogrammed values of approx. 107 Ω varied [7]. The number
PDF
Album
Full Research Paper
Published 29 Oct 2020

Selective detection of complex gas mixtures using point contacts: concept, method and tools

  • Alexander P. Pospelov,
  • Victor I. Belan,
  • Dmytro O. Harbuz,
  • Volodymyr L. Vakula,
  • Lyudmila V. Kamarchuk,
  • Yuliya V. Volkova and
  • Gennadii V. Kamarchuk

Beilstein J. Nanotechnol. 2020, 11, 1631–1643, doi:10.3762/bjnano.11.146

Graphical Abstract
  • shown in Figure 2 was calculated is limited by the maximum time of the breath test. However, the total exposure time and relaxation time of the majority of the breath tests did not reach 180 s and the missing points of the response curves were assigned zero values. Thus, the characteristic time interval
PDF
Album
Full Research Paper
Published 28 Oct 2020

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • process and also due to the restructuring of gold at the nanometer scale via a surface diffusion mechanism. Based on the STEM data (Figure 6) it is possible to conclude that silver underwent a solid-state diffusion mechanism to reach the upper surface of the film. In principle, this was an intriguing
PDF
Album
Full Research Paper
Published 22 Oct 2020

Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators

  • Mingliang Yao,
  • Guangzhong Xie,
  • Qichen Gong and
  • Yuanjie Su

Beilstein J. Nanotechnol. 2020, 11, 1590–1595, doi:10.3762/bjnano.11.141

Graphical Abstract
  • between. The undulated electrode serves as a spacer and also as an induction electrode for energy collection. Triggered by the steps of human walking, the open-circuit voltage and short-circuit current reach values up to 86 V and 6.2 μA, respectively, which is sufficient to light up 110 light-emitting
PDF
Album
Full Research Paper
Published 20 Oct 2020

Electrokinetic characterization of synthetic protein nanoparticles

  • Daniel F. Quevedo,
  • Cody J. Lentz,
  • Adriana Coll de Peña,
  • Yazmin Hernandez,
  • Nahal Habibi,
  • Rikako Miki,
  • Joerg Lahann and
  • Blanca H. Lapizco-Encinas

Beilstein J. Nanotechnol. 2020, 11, 1556–1567, doi:10.3762/bjnano.11.138

Graphical Abstract
  • mg·mL−1 in ultrapure H2O + 0.01% Tween 20. Particles were then diluted to 250 mg·mL−1 in the same suspension medium used to fill the device (DI water with added K2HPO4 to reach pH 6.2 and a conductivity of 21.3 µS·cm−1, supplemented with 0.05% Tween 20) and subsequently sonicated to break up particle
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • of different stellar processes [10][12], resulting in extreme heterogeneity of data across nanometre-scale distances. Ion imaging in cosmochemistry is typically performed with the NanoSIMS instrument, which can reach spatial resolutions of 50–100 nm for Cs+ with a beam current below 1 pA and 200–400
PDF
Album
Full Research Paper
Published 02 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • changes can be observed. In the MgO bandgap region (magnified in Figure 5b), the intensities of the HOMO* and SOMO increase and reach their maximum value at a 6P dose between 1 and 1.5 Å. The increase in the molecular emission features is accompanied by an increase in the work function (ΔΦ, values listed
PDF
Album
Full Research Paper
Published 01 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • diameters ranging between 80 and 180 nm and length values that can reach several tens of micrometers. The chemical reduction method was initially proposed by Michael Faraday in 1856–1857 while investigating the properties of colloidal gold. This method generally uses a precursor, a reducing agent, and a
PDF
Album
Review
Published 25 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • reach a value of $9.5 billion USD by 2024, resulting in a compound annual growth rate of 13.2% during 2019–2024 [1]. Especially in the transport industry, fuel cells are expected to play a significant economic and ecological role when it comes to environmentally friendly energy production due to their
  • limitations and increases the surface area [20]. A typical histogram of the Pt-NPs is shown in Figure 2c, displaying a narrow PSD with a geometric standard deviation [21] between 1.24 and 1.3. Such a narrow PSD, in combination with a small particle size, is essential to reach high mass activities in catalysis
  • pressure (Table 1: P3 vs P2 vs P4) and increasing carrier gas flow rate (Table 2: P6 vs P2 vs P7), which most likely results from decreased residence times (increased absolute gas velocity) of the educts. At high gas velocities, more Pt can reach the substrate, as at lower gas velocities Pt is already
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • output power density of the TVB-TENG can reach 120.13 µW/cm2. In addition, the approximate values of the open-circuit voltage (Voc) and short-circuit current (Isc) of this device were 340 V and 46.3 μA, respectively. These results indicate that sufficient power can be supplied to systems with low power
PDF
Album
Full Research Paper
Published 11 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • assumed that free surfaces with given Hamaker constants are brought together. If the surfaces reach a distance corresponding to the diameter of one particle, the nonretarded van der Waals interaction will match the ratio of the surface energy values. More precisely, the spreading factor, Γ, is the limit
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • used, in situ, in between exposures to assess the shrinkage, stiffness change or sputtering of the resist. More applications such as conductive AFM, piezo-force microscopy or magnetic force microscopy are within reach of the presented technology and would make AFM–HIM appealing to the microelectronics
PDF
Album
Full Research Paper
Published 26 Aug 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • before measurement. Nitrogen (N2) and krypton (Kr) sorption measurements were carried out at 77.4 K (−196.75 °C). Unfortunately, the adsorption measurements of N2 on the HT samples could not reach equilibrium and it was therefore not possible to obtain reliable isotherms. This might be due to the large
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • magnetic relaxation time decrease with an increase in polymer surface density until they reach a minimum value. For high values of the polymer surface density, there is an increase in the average values of both the Néel relaxation time and the effective magnetic relaxation time. The average of the minimum
  • both the Néel relaxation time and the effective magnetic relaxation time decrease with an increase in coating thickness. Then, these relaxation time values reach a minimum, after which a slight increase occurs. At high values of the polymer surface layer density, the average values of both the Néel
  • relaxation time and the effective magnetic relaxation time increase with an increase in coating thickness. Then, these relaxation times reach a maximum value, after which a slight decrease occurs. It was also shown that, regardless of the coating thickness, for small values of the polymer surface layer
PDF
Album
Full Research Paper
Published 12 Aug 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • . The trapped molecules in the thin chamber used in our setup are always close to the surface as the vertical thermal gradient is pushing them away from the absorbing chromium layer. The molecules reach the surface at least as often as they meet each other, which might lead to a competition between the
  • =0.42). The focused beam passes through the substrate and is absorbed in the chromium layer, thus creating a circular heated spot on the sample (R = 10 μm), which is up to 60 K warmer than the ambient temperature. The resulting temperature gradients reach up to 10 K/μm in the lateral direction (Figure
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020
Other Beilstein-Institut Open Science Activities