Search results

Search for "interaction" in Full Text gives 1373 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae)

  • Venkata A. Surapaneni,
  • Tobias Aust,
  • Thomas Speck and
  • Marc Thielen

Beilstein J. Nanotechnol. 2021, 12, 1326–1338, doi:10.3762/bjnano.12.98

Graphical Abstract
  • rolled) during growth and their interaction with the external environment. Mechanically, when the strain in the cuticle (induced by the simultaneous isotropic production of the cuticle and anisotropic expansion of the underlying cells) increases beyond a critical strain value, ridges start to develop [37
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • nonlinear response feature to the onset of tip–sample detachment in our numerical simulations to confirm the conclusions from prior works [26][27][28]. The simulations allow for deeper insight into cantilever dynamics during the interaction between the AFM probe tip and the sample, which in turn allow us to
  • , which negatively affects property measurements depending on constant tip geometry. Conclusion In summary, CR-AFM users must be aware of the potential for detachment of the tip from the sample. Without the ability observe the interaction between the AFM probe tip and the sample directly, users must infer
  • defined as: where u(L1,t) is the deflection of the cantilever about the equilibrium at the location of the probe tip. The tip–sample interaction FTS is rooted in the Derjaguin, Muller, and Toporov (DMT) model of adhesive contact between particles [34], but modified via works by Shaik et al. [35] to
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • film, which changes the conditions of electromagnetic interaction between plasmons and luminescent material. TeO2:Eu-based structures The results of the XPS analysis of TeO2:Eu luminescent layer are presented in Figure 7. Two peaks at 587.3 and 576.07 eV, with an energy separation of 10.37 eV
PDF
Album
Full Research Paper
Published 22 Nov 2021

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • originating from the interaction between the magnetic field and the CoFe2O4 nanoparticles. As a result, a very high β phase content (up to 95%) has been measured in the PVDF nanocomposite with 5 wt % CoFe2O4. However, the authors limited the analysis to the β phase content and it was not clear if the β phase
  • nanoparticles, the measured FTIR spectra show a broadband shoulder close to the α phase peak located at 763 cm−1 (probably due to the interaction between polymer and nanoparticles), making the evaluation of the relative fraction of β phase by using Equation 1 difficult. By deconvolving the shoulder from the
  • of the β phase along the direction of the applied magnetic field rather than an increase of the β phase content itself. We believe that the increase of the d33 is due to the strong interaction between the molecular chains of the polymer nanocomposite and the magnetic field, thanks to the drag effect
PDF
Album
Full Research Paper
Published 19 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • liquid–solid interaction parameter [62]. However, it should be noted that this model is only applicable to cases of water slippage on smooth surfaces, and there are some deviations for water slippage on rough surfaces [66]. On the other hand, even on very smooth surfaces, the contact angle, surface–water
  • interaction energy, and water slippage (or friction coefficient) may also not have a one-to-one correspondence between each other [67][68][69]. Contrary to the conventional wisdom, where slip boundary conditions are not valied for water slippage on hydrophilic surfaces, some simulation observations show that
  • liquid water can still slip even when the attraction between water and the solid wall is strong [67][68]. Besides the solid–water interaction energy, water slippage is also determined by the spatial distribution of water molecules within the contact layer on solid surfaces [68][69]. Under the condition
PDF
Album
Review
Published 17 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • interaction of the probe with the sample is used in off-resonance dynamic modes [6]. Although they have various names, depending on the specific manufacturer (PeakForce Tapping, Hybrid Mode, Digital Pulsed Force Mode), a common feature of these methods is that the transition to the contact is carried out
  • classical contact mode, the friction force can be measured; when using off-resonance dynamic modes, stiffness and adhesion in the samples can be determined. Obviously, in determining the mechanical properties, the force of tip–surface interaction should be somewhat greater than that required if the task is
  • strictly limited to the measurement of topography. When scanning in air, the interaction of the tip with the sample can be reduced, and the measurements themselves are performed more delicately when using resonance modes. In this class of AFM techniques, the probe is forced to oscillate close to its
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • strength of electron–phonon interaction, the system is occupied by a different number of electrons that effectively interact with each other repulsively or attractively. This leads, together with the interference effects, to different spin or charge Fano–Kondo effects. Keywords: Fano effect; Kondo effect
  • single occupied orbitals. In consequence, the regions of occurrence of an even number of electrons in the system narrow down or completely disappear with the increase of the strength of e–ph interaction. Fluctuating spin doublets interfering with the wave propagating through a direct path give rise
  • electrons. The term describing the interaction between the dots parameterized by U’ does not appear either. Following Lang and Firsov [66][67] the electron–phonon couplings in a DTQD can be eliminated by canonical transformations: with The new fermion (polaron) operators are and with (l = 1) and
PDF
Album
Full Research Paper
Published 12 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • , NO2 and SO2 gases at 100 ppm gas at 350 degree centigrade. Though the morphology of the fractals did not change appreciably, Pt doping led to faster response and recovery times. This could be due to the excellent interaction of Pt with hydrogen via the established spillover effect that catalyzes
  • had minimum influence. Thus, better interaction between NO2 and the sensor surface was achieved. The SnO2 DNWs were estimated to have a fractal dimension of 1.82. In 2017, Zang et al. fabricated SnO2 leaf-like hierarchical structures by hydrothermal synthesis [67]. Figure 7a–f shows SEM images of SnO2
  • resulting in more interaction sites at which analyte and sensor can interact. The authors termed the mechanism “random tunneling junction network”. Here, electron transport across the fractal structures is assumed to occur via tunneling. Different fractal dimensions lead to different Schottky barrier
PDF
Album
Supp Info
Review
Published 09 Nov 2021

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • are known to be electrocatalytically active toward oxygen electrochemistry [16][17]. Multiple ways of introducing cobalt have been reported, and the interaction of cobalt and carbon has been discussed under various aspects since the early 1970s [18]. The applied methods can be generally divided into
  • the interaction between electrons and solids was used to choose a suitable acceleration voltage. To differentiate the carbon fibres and the particles an acceleration voltage of 5 kV was employed, allowing for surface analysis. To avoid carbon signal intensity interference from the graphite tape the
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • amorphous substrates, for example, amorphous silica or amorphous carbon, which are commonly used in FEBID and surface science experiments. The structure of precursor molecules, their interaction with a substrate, and the dynamics of nanostructure formation and growth are influenced by interatomic
  • is the angle force constant, and the sigmoid function describes the effect of bond breakage. Here, with r0 being the equilibrium distance between two atoms involved in the angular interaction and being the van der Waals radius for those atoms. In the case study considered, the initial geometry of a
  • means of IDMD [13][15], the fully hydroxylated SiO2 substrate is fixed in space in the course of simulations to speed up the simulations. The interaction between the ideal SiO2-H surface and adsorbed Pt-containing precursor molecules and fragments is governed by weak van der Waals bonding, which agrees
PDF
Album
Full Research Paper
Published 13 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • assemblies at the nanoscale. This component exhibits regular aggregate properties through hydrogen bonding and ion interaction, which are highly similar to those of amyloid components, suggesting that it may be associated with the etiology of amyloid-related diseases. Besides, the resulting structure is as
  • interaction between phenylalanine (Phe) rings may play a major role in the self-assembly process. Interestingly, their study also revealed that ᴅ-Phe changes ʟ-Phe fibrous state to flakes, which do not propagate further and do not seed ʟ-Phe, suggesting that ᴅ-Phe may be a potential therapeutic molecule for
  • product, easy assembly, self-calibration, and no defects [55]. The prepared components may further be used as modular “building blocks” for building higher-order upper structures with increased complexity and functionality [56]. Metal coordination can become a strong interaction due to its near-covalent
PDF
Album
Review
Published 12 Oct 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • acid with fluorine and a piperazine ring [25]. It exhibits a zwitterionic nature, with a pKa1 and pKa2 of 6.2 and 8.5, respectively [26]. Zwitterionic molecules like amino acids and amphoteric hydroxy groups get adsorbed onto iron oxide nanoparticles predominately via electrostatic interaction [27][28
  • ]. Furthermore, their interaction with IONPs may be via carboxylate groups, amine groups or by neither [27]. pH variations thus can play a key role in promoting interactions between amino acids and metal oxide surfaces [29]. NOR has also been reported to form stable complexes with Fe2+/3+ [22]. It was also
  • work, we used NOR as a model fluoroquinolone and a zwitterionic drug, to explore its interaction with IONPs and further achieve any potential improvement in intra-macrophage delivery and drug accumulation. Being a zwitterionic drug, NOR exists in 3 forms; NOR+ (at pH < 6.2), NOR± (at pH 7) and NOR− (at
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • (OL) variant of Kelvin probe force microscopy (KPFM) provides access to the voltage response of the electrostatic interaction between a conductive atomic force microscopy (AFM) probe and the investigated sample. The measured response can be analyzed a posteriori, modeled, and interpreted to include
  • the measured electrical tip–sample interaction is directly affixed to the topography rendered by the mechanical PFT modulation at each tap. Furthermore, because the detailed response of the cantilever to the bias stimulation was recorded, it was possible to analyze and separate an average contribution
  • of the cantilever to the determined local contact potential difference between the AFM probe and the imaged sample. The removal of this unwanted contribution greatly improved the accuracy of the AM-KPFM measurements to the level of the FM-KPFM counterpart. Keywords: electrostatic interaction; Kelvin
PDF
Album
Full Research Paper
Published 06 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • shows the interaction between phonons and the lattice volume. It relates to the vibrational frequency change when the volume of the crystal lattice is varied. It also demonstrates the effect of temperature variations on the size or dimensions of the crystal structure. The Debye temperature can be
PDF
Album
Full Research Paper
Published 05 Oct 2021

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • may occur. Agglomeration of nanoparticles may be controlled by different mechanisms. During synthesis one observes agglomeration controlled by the geometry and electrical charges of the particles. Additionally, one may find agglomeration controlled by thermodynamic interaction of the particles in the
  • direction of a minimum of the free enthalpy. In this context, one may observe mechanisms leading to a reduction of the surface energy or controlled by the van der Waals interaction. Additionally, the ensemble may arrange in the direction of a maximum of the entropy. Simulations based on Monte Carlo methods
  • teach that, in case of any energetic interaction of the particles, the influence of the entropy is minor or even negligible. Complementary to the simulations, the extremum of the entropy was determined using the Lagrange method. Both approaches yielded identical result for the particle size distribution
PDF
Album
Full Research Paper
Published 29 Sep 2021

A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques

  • Berkin Uluutku,
  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2021, 12, 1063–1077, doi:10.3762/bjnano.12.79

Graphical Abstract
  • ][9][10][11]. With regards to viscoelasticity, efforts that incorporate classical viscoelastic theory [12][13][14][15][16] rely on force–distance curves [17][18][19][20][21][22][23][24][25][26], which describe the dependence of the probe–sample interaction force with respect to the probe–surface
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • . In order to maximize the beneficial health effects of CUR, critical factors need to be strictly controlled, such as particle size, morphology, and interaction between the encapsulating material and CUR. In addition, there is an area of study to be explored in the development of CUR-based smart
  • proapoptotic effect through its interaction with multiple molecular targets, including caspases (3, 9, and 8), Apaf1, PARP, Bax, Cyto-C, PUMA, MCL-1, and Survivin, while also suppressing the expression of β-catenin, p-glycogen synthase kinase-3β (GSK-3β), cyclin D1, c-myc, and the PI3K/Akt/mTOR pathway [24
PDF
Album
Review
Published 15 Sep 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • by adsorption [92], with rates of release depending on interaction of the drug with the porous silicon. Oxidation, covalent binding, and electrostatic interactions can all be used to immobilise the drug on the porous silicon [94], while both hydrophilic and hydrophobic molecules can be loaded on
PDF
Album
Review
Published 13 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • oxygen-doped carbon-based materials, are able to physically confine sodium polysulfides, minimizing the shuttle effect. However, the interaction between the carbon structure and sodium polysulfides is generally weak since the former is a nonpolar material while the latter is a polar compound [12
  • 10 A·g−1) [49]. Metallic and metal oxide compounds have also attracted much interest due to their electronic conductivity and their high polarity, which leads to strong chemical interaction with polysulfides. For instance, Yan et al. [50] reported an electrode with an excellent performance that is
  • , polysulfides are converted to polythionate [O3S2–(S)x−2–S2O3] complexes bound to the electrode surface, which inhibits the shuttle effect [12]. A similar electrochemical mechanism has been reported by Kumar et al. [51] based on XPS analyses. The results show that the interaction between MnO2 and long-chain
PDF
Album
Review
Published 09 Sep 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • interaction volume, a steady-state condition of ion impurity concentration and number of induced defects is reached. The EBSD measurements and Monte Carlo simulations indicate that when this steady-state condition is reached more quickly, which can be achieved using high-energy Ne ions at a glancing incidence
  • interaction types is illustrated in Figure 1. The ions, irrespective of the ion species, interact with the sample atoms via nuclear and electronic interactions. The electronic interactions lead to secondary electron emission and polymerization while the nuclear interactions lead to sputtering, sample atom
  • determine the resulting interaction volume of the ions for the various conditions as well as vacancy formation and implanted impurity concentration. In addition, the achieved results are compared to those achieved by the conventionally used argon ion polishing (PIPS) and electropolishing approaches. Results
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • their structural and electronic properties [1][2][3][4][5][6]. An important aspect to unravel their potential use in electronic and optoelectronic devices is how their functionality can be preserved when adsorbed on surfaces. Unfortunately, the (strong) interaction of the molecules with the metallic
  • surface, for example, due to hybridization of molecular states with electronic bands from the metallic substrate, often alters the electronic properties of the molecules and, moreover, can even turn off their sought-after functionality. As a result of the (strong) interaction, the molecular scaffolds can
  • . Among others, ultrathin dielectric layers of either alkali halides (e.g., NaCl [17]) or metal oxides (e.g., MgO [18], Al2O3 [19], and CuO [20]), or nitrides (CuN [21]) have been shown to be beneficial for successfully reducing or even completely switching off the unwanted interaction between the metal
PDF
Editorial
Published 23 Aug 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • toxic and considered biologically inert [44][57][58]. Numerous in vitro studies carried out using high-throughput techniques such as microscopic techniques, TEM, and ICP-MS revealed the fate of nanoparticles and their interaction at the interface between the metal surface and cell membrane. Electron
  • the capping agent used) and the cell type used for toxicity assessment. Chan and co-workers reported that cell internalization is optimum for nanoparticles with a size of 40–50 nm [59]. This is due to maximum interaction between antibody and receptor during receptor-mediated endocytosis. In vitro
  • cytokines of carrageenan was carried out using human intestinal cells (HCT-8 and HT-29) [108]. Also, carrageenan, due to the SO3− groups, showed interaction with positively charged quaternary ammonium surfactants [109]. However, this sulfated oligosaccharide is yet to realize its full potential in the field
PDF
Album
Review
Published 18 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • the electrostatic interaction between analyte molecules and silver nanoparticles (Ag NPs) on the intensity of surface-enhanced Raman scattering (SERS). For this, we fabricated nanostructured plasmonic films by immobilization of Ag NPs on glass plates and functionalized them by a set of differently
  • surface modifications were tested using a negatively charged oligonucleotide labeled with Black Hole Quencher dye. Only the addition of copper ions into the analyte solution yielded a good SERS signal. Considering the strong interaction of copper ions with the oligonucleotide molecules, we suppose that
  • inversion of the analyte charge played a key role in this case, instead of a change of charge of the substrate surface. Changing the charge of analytes could be a promising way to get clear SERS spectra of negatively charged molecules on Ag SERS-active supports. Keywords: electrostatic interaction
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
PDF
Album
Review
Published 13 Aug 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • properties in various fields, such as supercapacitors, integrated electrodes, catalysis, and sensors [10][11][12][13]. Furthermore, the interaction between graphene and matrix materials directly affects the mechanical properties of composites [14]. The van der Waals force between graphene and metals can
  • step of 1 fs and a strain rate of 1.25 × 108 s−1. The interaction between Cu atoms is described by the embedded atom model (EAM) potential. The adaptive intermolecular reactive empirical bond order (AIREBO) potential describes the forces between C atoms, the cutoff radius is chosen as 10.2 Å [31]. The
PDF
Album
Full Research Paper
Published 12 Aug 2021
Other Beilstein-Institut Open Science Activities