Search results

Search for "penetration" in Full Text gives 317 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • when the irradiated molecular layers were sufficiently thick. This effect was explained by deactivation of the OH radicals by capturing of thermalized electrons, an effect that can only occur near the surface and not below a depth roughly corresponding to the effective penetration depth of the electron
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Study of the vertically aligned in-plane switching liquid crystal mode in microscale periodic electric fields

  • Artur R. Geivandov,
  • Mikhail I. Barnik,
  • Irina V. Kasyanova and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2018, 9, 11–19, doi:10.3762/bjnano.9.2

Graphical Abstract
  • penetration of high electric fields into the LC bulk will be limited by a value of p. Therefore, a strong and fast LC director deformation will occur only in the part of the LC layer adjacent to the electrodes, which should be favorable for a higher relaxation speed. On the other hand, the surface deformation
  • elastic deformation from the surface into the bulk. The relaxation time of the bulk mode depends on the penetration depth of the deformation into the LC layer volume along the layer normal. This depth can be controlled by both the driving pulse duration and the thickness of the LC layer. By varying the
PDF
Album
Full Research Paper
Published 02 Jan 2018

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • , respectively). This originates (i) from the high amount of dye and/or the photodegradation intermediates adsorbed at the photocatalyst surface and (ii) from the decrease of the light penetration in the reactor due to the high absorption of RhB and thus to the decreased amount of reactive oxygen species
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

Hyperthermic intracavitary nanoaerosol therapy (HINAT) as an improved approach for pressurised intraperitoneal aerosol chemotherapy (PIPAC): Technical description, experimental validation and first proof of concept

  • Daniel Göhler,
  • Stephan Große,
  • Alexander Bellendorf,
  • Thomas Albert Falkenstein,
  • Mehdi Ouaissi,
  • Jürgen Zieren,
  • Michael Stintz and
  • Urs Giger-Pabst

Beilstein J. Nanotechnol. 2017, 8, 2729–2740, doi:10.3762/bjnano.8.272

Graphical Abstract
  • ), based on extracavitary generation of hyperthermic and unipolar charged aerosols, was developed. The aerosol size distribution, the spatial drug distribution and in-tissue depth penetration of HINAT were studied by laser diffraction spectrometry, differential electrical mobility analysis, time of flight
  • nm) unipolar-charged hyperthermic (41 °C) drug aerosol for quasi uniform drug deposition over the whole peritoneum with significantly deeper drug penetration than that offered by conventional PIPAC. Keywords: HINAT; intracavitary; intraperitoneal; nanoaerosol; PIPAC; pressurized; therapy
  • substances at minimal systemic toxicity, first approaches for locoregional/intracavitary chemotherapy (ICC) based on liquid drug instillation (LICC) were already developed about forty years ago [2][3][4]. Unfortunately, the effectivity of LICC is limited by low in-tissue penetration and the difficulties to
PDF
Album
Full Research Paper
Published 18 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • the bulk material dominates the detected EDX signals. For example, the penetration depth, d, of the focused electron beam with a primary energy of 10 keV within amorphous carbon or silicon can be estimated to be in the range of 1.8 µm by the following equation [44]: d (μm) = 0.1E1.5/ρ, where E is the
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • penetration of liquid solution into the interfaces formed between the metal films and the SOG substrate. To prevent the degradation in performance that this engendered, a conformal ≈6 nm thick Al2O3 passivation film was deposited on top of the metal by atomic layer deposition (Cambridge Nanotech). Bulk
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017

Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition

  • Julie A. Spencer,
  • Michael Barclay,
  • Miranda J. Gallagher,
  • Robert Winkler,
  • Ilyas Unlu,
  • Yung-Chien Wu,
  • Harald Plank,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2017, 8, 2410–2424, doi:10.3762/bjnano.8.240

Graphical Abstract
  • surface area Pt catalysts and may reverse the effects of sintering. In marked contrast to the effect observed with AH, densification of the structure was observed during the postdeposition purification of PtCx deposits created from MeCpPtMe3 using atomic oxygen (AO), although the limited penetration depth
  • occur in a top-down manner, but is rather controlled by the penetration depth of the incident electron beam. At a beam energy of 5 keV, complete carbon removal could be obtained up to an initial thickness of 150 nm. In addition to purification, the purified deposit was compacted to form a high-fidelity
  • only Pt and Cl as determined by analysis in the AES system and by EDS (Figure 1b,c). Based on the attenuation of the substrate peaks in EDS, and using an estimated penetration depth of ≈200 nm for the 10 keV electron beam together with the software package CASINO v2.48 [50], the PtCl2 deposits studied
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2017

Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

  • Ragesh Kumar T P,
  • Sangeetha Hari,
  • Krishna K Damodaran,
  • Oddur Ingólfsson and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2017, 8, 2376–2388, doi:10.3762/bjnano.8.237

Graphical Abstract
  • substrate, significant inelastic and elastic scattering will take place at the surface and within the substrate along the penetration depth of the beam [3][4]. Furthermore, a significant number of secondary electrons are produced through inelastic ionizing scattering of the primary beam and its scattered
  • size of the interaction volume in a pillar does not necessarily have to be the same as in the bulk, because of the reduced scattering in a pillar. For example, the Monte Carlo simulated mean electron penetration depth for 20 keV electrons in a flat aluminium substrate is 3200 nm [42] while the
  • simulated electron penetration depth for 20 keV electrons in a pillar with a cone angle of 10° is only 240 nm [42]. Similarly, the simulated depth of the interaction volume for 20 keV electrons in bulk SiO2 is ca. 3 μm [43], while the calculated averaged depth of the interaction volume for 20 keV electrons
PDF
Album
Full Research Paper
Published 10 Nov 2017

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • from the template (Figure 1e). Droplets of water were added to the exposed edges of the template, separating the hydrophobic PLLA film from the hydrophilic master template by penetration into the interface between them. After one minute, the PLLA/PDMS film was peeled off and the negative replica of the
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Surfactant-induced enhancement of droplet adhesion in superhydrophobic soybean (Glycine max L.) leaves

  • Oliver Hagedorn,
  • Ingo Fleute-Schlachter,
  • Hans Georg Mainx,
  • Viktoria Zeisler-Diehl and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2017, 8, 2345–2356, doi:10.3762/bjnano.8.234

Graphical Abstract
  • group [30]. Surfactants are characterized by their hydrophilic/lipophilic balance (HLB). In general, if they have a high HLB (>10) they enhance the penetration of herbicides with high-water solubility, while lipophilic surfactants with a low HLB (<10) effectively enhance the uptake of poorly water
  • partial contact to the plant surface. However, the hairs of the soybean leaves capture the applied water droplets at low inclination angles of the leaf (Figure 5). Since these hairs are not covered with wax crystals, they have a more hydrophilic character, which is indicated by the penetration of the
  • penetration of the hairs into the droplet (B) and the concave meniscus which occurs when hairs come into contact with droplets resting on the surface (C). In (D) a scanning electron micrograph of a frozen glycerol–water droplet in contact with the leaf surface of Glycine max L. is shown. Surfactants used for
PDF
Album
Full Research Paper
Published 08 Nov 2017

Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2230–2244, doi:10.3762/bjnano.8.223

Graphical Abstract
  • analytical solutions refer to the open access code provided in [48]. Mechanical model diagram of a flat-end indenter penetrating into a Generalized Maxwell (Wiechert model) viscoelastic surface. The model diagram shows the relationship between the Laplace transformed penetration and the transformed force
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2017

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • could potentially remove the electrode material by an accelerated penetration into surface asperities by the oscillatory action of the QCM [44][45][46]. Additional scanning electron microscopy (SEM) images (Figure 5) were recorded on the SS304 samples to further elucidate changes in the surface topology
PDF
Album
Full Research Paper
Published 29 Sep 2017

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

  • Nan Shen,
  • Miriam Keppeler,
  • Barbara Stiaszny,
  • Holger Hain,
  • Filippo Maglia and
  • Madhavi Srinivasan

Beilstein J. Nanotechnol. 2017, 8, 2032–2044, doi:10.3762/bjnano.8.204

Graphical Abstract
  • ranges, faster charging, and lower costs), the development and optimization of electrode materials are of great interest. Considering that a target driving range of 300 miles is required for BEVs to achieve a sustainable mass market penetration (as defined by the US Department of Energy), the energy
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2017

Bi-layer sandwich film for antibacterial catheters

  • Gerhard Franz,
  • Florian Schamberger,
  • Hamideh Heidari Zare,
  • Sara Felicitas Bröskamp and
  • Dieter Jocham

Beilstein J. Nanotechnol. 2017, 8, 1982–2001, doi:10.3762/bjnano.8.199

Graphical Abstract
  • of the depositing molecules decreases exponentially with penetration depth not only by diffusion but also by deposition losses, which causes a steeply dropping layer thickness. The reaction can occur in the gas phase as well as during or after the process of condensation (physisorption). By diluting
PDF
Album
Full Research Paper
Published 22 Sep 2017

Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics

  • Stefania Lettieri,
  • Marta d’Amora,
  • Adalberto Camisasca,
  • Alberto Diaspro and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2017, 8, 1878–1888, doi:10.3762/bjnano.8.188

Graphical Abstract
  • 10.3762/bjnano.8.188 Abstract Multishell fullerenes, known as carbon nano-onions (CNOs), have emerged as a platform for bioimaging because of their cell-penetration properties and minimal systemic toxicity. Here, we describe the covalent functionalization of CNOs with a π-extended distyryl-substituted
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2017

Optical techniques for cervical neoplasia detection

  • Tatiana Novikova

Beilstein J. Nanotechnol. 2017, 8, 1844–1862, doi:10.3762/bjnano.8.186

Graphical Abstract
  • from the spatial difference in refractive indices of layers and structures within the tissue. The high resolution of OCT (2–20 µm) and a depth of penetration up to 2 mm allow clinicians to visualize the sub-surface tissue in real time at a spatial resolution better than that available with other
PDF
Album
Review
Published 06 Sep 2017

α-Silicene as oxidation-resistant ultra-thin coating material

  • Ali Kandemir,
  • Fadil Iyikanat,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1808–1814, doi:10.3762/bjnano.8.182

Graphical Abstract
  • -silicene (i) strongly absorbs single O atoms and (ii) absorbs O2 molecules by breaking the strong O–O bond. (iii) Even the hollow sites, which are found to be most favorable penetration path for oxygens, serves as high-energy oxidation barrier, and (iv) α-silicene becomes more protective and less permeable
  • of the lower silver atom at the fcc site results in a deeper penetration of the oxygen atom than at the hcp site. Compared to a single oxygen atom, the O2 molecule behaves differently on a bare silver surface. Figure 2c and Figure 2d) show how the O2 molecule interacts with the silver surface
  • sites for the penetration into the structure. Therefore, the hollow sites are considered for the indentation simulation. There are four different hollow sites in the silicene structure on Ag(111), as shown in Figure 3b. The sites are denoted as H1, H2, H2’ and H3. H2 and H2’ sites coincide to the fcc
PDF
Album
Full Research Paper
Published 31 Aug 2017

Nanotribological behavior of deep cryogenically treated martensitic stainless steel

  • Germán Prieto,
  • Konstantinos D. Bakoglidis,
  • Walter R. Tuckart and
  • Esteban Broitman

Beilstein J. Nanotechnol. 2017, 8, 1760–1768, doi:10.3762/bjnano.8.177

Graphical Abstract
  • radius of ca. 100 nm. Penetration depths of 50, 100, and 200 nm were set. A 3 × 4 array of indentations was performed in the specimens at each penetration depth, spaced at 20 μm from each other. The significance of the obtained results was determined by analysis of variance (ANOVA), using the statistical
  • area A of the tip as a function of the penetration depth (h): A = (2Rh − h2), where R is the tip radius. The volume of the displaced material during each cycle is calculated as the sum of areas at the different penetration depths of the track. Additionally, the evolution of the average trench roughness
  • reported by Das and co-workers [3][36]. Nanoindentation tests A summary of the results from the nanoindentation tests performed with the Berkovich tip is shown in Table 2. It can be seen that the residual height (hr) was smaller for DCT specimens at all penetration depths, meaning that they had a larger
PDF
Album
Full Research Paper
Published 25 Aug 2017

Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

  • Lyubov G. Bulusheva,
  • Yuliya V. Fedoseeva,
  • Emmanuel Flahaut,
  • Jérémy Rio,
  • Christopher P. Ewels,
  • Victor O. Koroteev,
  • Gregory Van Lier,
  • Denis V. Vyalikh and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 1688–1698, doi:10.3762/bjnano.8.169

Graphical Abstract
  • spectrum of DWCNTs fluorinated by F2 (Figure 1, curve 4). This is possibly due to fluorine penetration between the DWCNT layers. However, in the spectra of DWCNTs fluorinated by CF4 plasma and BrF3 two lines are clearly visible in the range of 270–320 cm−1 , which can undoubtedly be attributed to the non
  • and/or the penetration of some fluorine atoms between the layers, as we intended from Raman scattering in the RBM region. The dominating band at 1125 cm−1 in the spectrum of the BrF3-treated sample hints to a chain-like fluorination pattern. The different bonding behavior is consistent with our
  • DWCNT shell only. In the spectrum of the F2-treated sample, RBMs of the inner tubes were very weak and this may be a sign of fluorine penetration between the layers. XPS C 1s spectra detected that not every carbon atom of the outer shells was bonded with fluorine. The average number of bare carbon atoms
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2017

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • to Au 4f electrons, as well as peaks at 780.2 and 795.3 eV, which can be attributed to Co 2p electrons. The minor broadened peaks that were observed at binding energies of ca. 790 eV and just above 800 eV can be attributed to cobalt oxide [37]. Since XPS is a surface technique, the penetration depth
PDF
Album
Full Research Paper
Published 14 Aug 2017

Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

  • Markus Moosmann,
  • Thomas Schimmel,
  • Wilhelm Barthlott and
  • Matthias Mail

Beilstein J. Nanotechnol. 2017, 8, 1671–1679, doi:10.3762/bjnano.8.167

Graphical Abstract
  • line). As the depth of the water was 185 nm, the air layer beneath had a height of 1.815 µm. Hence, more than 90% of the lateral surface area of the pillars remained dry. Under variation of the normal force applied to the interface by the AFM, we measured different penetration depths of the water into
  • the interface. Subsequently, no resulting force is applied to the cantilever (point 4). Figure 6b illustrates the situation expected for a penetration of the air–water interface in the case of pressure by the tip. The behavior displayed in the images 2–4 is the same as in Figure 6a. However, if the
  • were thus able to determine the penetration depth of the water into the hydrophobic pillar structure. The depth is linearly dependent on the force applied in accordance to Hooke’s law. We measured the depth by applying zero resulting force to the interface. This value was confirmed by linear regression
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2017

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Antonín Brož,
  • Lucie Bačáková,
  • Pavla Štenclová,
  • Alexander Kromka and
  • Štěpán Potocký

Beilstein J. Nanotechnol. 2017, 8, 1649–1657, doi:10.3762/bjnano.8.165

Graphical Abstract
  • NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

  • Christine Cheng and
  • Malancha Gupta

Beilstein J. Nanotechnol. 2017, 8, 1629–1636, doi:10.3762/bjnano.8.162

Graphical Abstract
  • , and prior use in biomedical applications [33]. A silicon wafer piece was placed under the substrate to visually observe the penetration of polymer through the lattice. To measure the change in hydrophobicity of the 7.5 mm PLA lattice after the deposition of PPFDA, contact angle changes were monitored
  • PLA and flat PPFDA due to surface roughness [34]. Penetration of polymer through the lattice was also confirmed by deposition on the silicon wafer piece underneath the lattice. We used Fourier transform infrared spectroscopy (FTIR) (Figure 2b) to compare the spectra of the PPFDA film deposited on the
PDF
Album
Full Research Paper
Published 08 Aug 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • function of the frequency. The impedance values between low-frequency region and high-frequency region do not change drastically compared to the GO-containing PAN nanofibers (see below in Figure 14). Addition of GO to PAN nanofibers changes the homogeneity of the electrode. Thus, the penetration of
  • electrolyte ions penetration varies with frequency. The values of Rs, Rct and Qdl were determined as 552 Ω, 340 Ω and 2·10−2 µS·sn according to the Randles circuit model for non-ideal electrodes described as Rs(QdlRct) in short hand. The CPE (Qdl) can also be attributed to the double-layer capacitance (Cdl
  • attributed to the disability of the electrolyte ions to penetrate into the electrode. The solution resistance (Rs) of the electrochemical system changes very slightly, which can be seen in Table 1. On the other hand, the impedance of Ox.PAN/GO nanofibers is very high due to the penetration of ions into the
PDF
Album
Full Research Paper
Published 07 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • with the accompanying chemical reactions, is presented in Figure 1. There is a number of advantages of the parylene technology. First of all, being a gas-phase diffusion-controlled process, it yields smooth pinhole-free conformal coatings with excellent penetration abilities. Second, there are several
  • degradation of IDS, measured in the OFET encapsulated with Parylene C (1 μm) may be attributed to the slow penetration of water vapor and oxygen through the encapsulation layer. The decrease in the permeability of water vapor and oxygen through the bilayer encapsulation film has been attributed to the sealing
PDF
Album
Review
Published 28 Jul 2017
Other Beilstein-Institut Open Science Activities