Search results

Search for "silicon" in Full Text gives 872 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • constraining the integration density, the multicore era effectively ends, leading to the “dark silicon” problem, i.e., only parts of available cores can be run simultaneously”. Energy efficiency has now become a crucial parameter, limiting the advancement of supercomputers. The powerful, modern supercomputer
PDF
Editorial
Published 10 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • mineral-organic polymer (its structure includes both carbon and silicon atoms). It is an elastomer and its elasticity can be tuned within a very broad range by changing the degree and the type of polymerization and by post-curing treatments [19][20]. The high and easily tunable elasticity, combined with
  • depicted by the energy loss profiles simulated with the “Stopping and Range of Ions in Matter (SRIM)” software, as shown in Figure S1 (Supporting Information File 1). In the case of He+ ion irradiation, a significant fraction of the total ion energy is lost in the silicon substrate below the PMMA layer
  • strain accumulation followed by the relaxation of this strain at a certain critical value. Experimental Materials and samples The PMMA and PDMS substrates used in this study were deposited onto the surface of blank silicon wafers. The deposition of PMMA was performed by spin coating in an RRT Lanz EBS 11
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Amorphized length and variability in phase-change memory line cells

  • Nafisa Noor,
  • Sadid Muneer,
  • Raihan Sayeed Khan,
  • Anna Gorbenko and
  • Helena Silva

Beilstein J. Nanotechnol. 2020, 11, 1644–1654, doi:10.3762/bjnano.11.147

Graphical Abstract
  • -switching process and not to the permanent and detrimental electrical breakdown failure that occurs in any dielectric material. Experimental The patterned GST-225 line cells used for this study were deposited on silicon dioxide (SiO2), had bottom metal contact pads (tungsten with Ti/TiN liner), and were
  • capped by silicon nitride [24]. All cells were approx. 130 nm in width, WGST, approx. 470 nm in length between the metal contacts, LGST, and approx. 50 nm in thickness, tGST (SEM image in inset of Figure 2a). The as-fabricated cells were annealed in a Janis ST-500-UHT probe station at a pressure of
PDF
Album
Full Research Paper
Published 29 Oct 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • material (cleanliness 99.9%, Alfa Aesar, Kandel, Germany) was deposited from an e-beam evaporator (type EFM3T, Focus GmbH, Huenstetten, Germany) on silicon samples held at about 600 °C by direct-current heating. Further details on the sample preparation and CaF2/Si(111) surface properties can be found in
  • (111)-(7 × 7), molecules bind in various geometries to the pristine silicon surface as apparent from Figure 1a. Among these geometries, a distinguished adsorption position on top of the (7 × 7) corner hole stands out. Two examples are marked by white ellipses in Figure 1a. The growth of ordered CaF2
  • films on Si(111) requires the formation of a CaF1 interface layer as the first step. This interface layer is generated by an interface reaction between CaF2 and the silicon surface [28][29], where surface temperatures around 600 °C during deposition facilitate the dissociation of CaF2 to CaF1 and F. The
PDF
Album
Full Research Paper
Published 26 Oct 2020

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • % of silver and gold, respectively, as determined by EDS. The deposition time was 15 min, the deposition pressure was fixed at 10 mTorr and the distance between the substrate and the targets was ≈10 cm. All deposition processes were carried out on single crystal silicon wafers at a 30 rpm rotation
PDF
Album
Full Research Paper
Published 22 Oct 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • Optics, Germany). An Ag2S/Si photodetector was prepared by depositing a Ag2S layer on the front side of a silicon substrate through a mask by drop-casting. A single-crystal p-type silicon (111) substrate with an electrical resistivity of 3–5 Ω·cm and a thickness of 300 μm was used. As shown in Figure 2
  • , a SiO2 thin film was grown on the silicon substrate before Ag2S deposition through rapid thermal oxidation (RTO) at a temperature of 950 °C for 25 s, and then HF etchant was used to open a Si window on SiO2. The experimental details regarding the RTO process are presented elsewhere [20]. To
  • investigate the optoelectronic properties of the Ag2S/Si photodetector, ohmic contacts were made by thermally evaporating In and Al films on the nanostructured Ag2S film and the back side of the silicon substrate, respectively, as shown in Figure 2. The sensitive area of the planar photodetector was 1.5 cm2
PDF
Album
Full Research Paper
Published 21 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • technologies are increasingly based on advanced functional materials, which are often blends of organic and inorganic components. For example, in search for renewable energy solutions, hybrid perovskites are currently the best candidate to replace silicon in our solar cells [1]. In medicine, hybrid materials
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • lithography (EBL) and wet etching consists of 1 μm deep square-based pyramidal pits in the silicon surface. A rhodamine solution (10−4 mol·L−1) is then detected using the Klarite substrate. Candeloro et al. [24] employed EBL and reactive ion etching to machine nanoholes of 400 nm diameter and 50 nm depth
  • ion beam (FIB) technology can also be used to directly fabricate high-precision nanostructures on surfaces made of silicon, silicon dioxide and metal [27][28][29][30][31][32][33]. FIB technology is therefore used as a processing method for SERS substrates. Using the FIB method, Lin et al. [29
  • ] fabricated micro/nanostructures on the surface of Au-coated single crystal silicon. By changing the etching time and current, micro/nanostructures with different size scales and geometric shapes (such as hexagons and pentagons) were obtained. Compared with other geometries, the hexagonal micro/nanostructure
PDF
Album
Full Research Paper
Published 16 Oct 2020

Electrokinetic characterization of synthetic protein nanoparticles

  • Daniel F. Quevedo,
  • Cody J. Lentz,
  • Adriana Coll de Peña,
  • Yazmin Hernandez,
  • Nahal Habibi,
  • Rikako Miki,
  • Joerg Lahann and
  • Blanca H. Lapizco-Encinas

Beilstein J. Nanotechnol. 2020, 11, 1556–1567, doi:10.3762/bjnano.11.138

Graphical Abstract
  • posts (Figure 2b and Figure S1, Supporting Information File 1) were made from PDMS employing standard soft lithography techniques. To create a device, PDMS (Dow Corning, Midland, MI) was cast onto a negative replica mold made with a silicon wafer (Silicon Inc., Boise, ID) and an SU-8 3050 photoresist
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • revealing local structural properties is illustrated in [49], where crystalline and amorphous regions within core–shell silicon nanowires are discerned with an optical resolution of a few nanometers. This study further demonstrates that it is possible to combine polarization angle-resolved experiments with
PDF
Editorial
Published 07 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • Abstract The wafer-level integration of high aspect ratio silicon nanostructures is an essential part of the fabrication of nanodevices. Metal-assisted chemical etching (MACE) is a promising low-cost and high-volume technique for the generation of vertically aligned silicon nanowires. Noble metal
  • nanoparticles were used to locally etch the silicon substrate. This work demonstrates a bottom-up self-assembly approach for noble metal nanoparticle formation and the subsequent silicon wet etching. The macroscopic wafer patterning has been done by using a poly(methyl methacrylate) masking layer. Different
  • with a reflectance below 0.3%. The demonstrated technology can be integrated into common fabrication processes for microelectromechanical systems. Keywords: black silicon; bottom-up; metal-assisted chemical etching (MACE); nanowires; wafer-level integration; Introduction Silicon nanostructures
PDF
Album
Full Research Paper
Published 23 Sep 2020

Protruding hydrogen atoms as markers for the molecular orientation of a metallocene

  • Linda Laflör,
  • Michael Reichling and
  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1432–1438, doi:10.3762/bjnano.11.127

Graphical Abstract
  • experiments (5 and 77 K) with qPlus sensors as well as at room temperature using silicon cantilevers [22]. Although the NC-AFM tips were not functionalised, i.e., not specifically terminated with atoms or molecules for imaging, we find a very good agreement between the experimental data and probe particle
  • evaporator (Focus GmbH, Huenstetten, Germany) on freshly prepared Si(111)-(7 × 7) surfaces held at about 930 K. Silicon substrates were highly B-doped p-type Si(111) samples (Institute of Electronic Materials Technology, Warsaw, Poland) with the (7 × 7) reconstruction prepared by flash cycles. Further
  • FDCA molecule to the tip with the carbonyl moiety facing the surface. This would be in line with earlier NC-AFM experiments of naphthalene tetracarboxylic diimide (NTCDI) adsorbed on Ag-terminated silicon surfaces [37]. In the latter case, the observation of submolecular contrast similar to images
PDF
Album
Full Research Paper
Published 22 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • (including preheating), and M is the molar mass of the precursor (393.302 g/mol). The material deposition was mainly done on 1 × 1 cm2 silicon substrates. In preparation for the cyclic voltammetry measurements, glassy carbon electrodes (GCEs; diameter 4 mm, Catalog No. 013338, ALS Co., Ltd.) were used as
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • theoretical, (ii) empirical, and (iii) semi-empirical models. The formation of nanometre-sized gold particles on silicon and silicon oxide substrates is investigated in detail. In addition, the strengths and weaknesses of the three models are elucidated, the different substrates used are compared, and the
  • chalcopyrites [11], or precursors for complex structures, such as nanowires [12]. Silicon, germanium and silicon oxide nanowires, for example, can be formed on different substrates by using metal catalysts in the form of tin, indium or gold nanodroplets [13][14][15]. Such nanometre-sized one-dimensional
  • the formation of the nanostructures. The wetting behaviour of gold deposited either on silicon or silicon oxide wafers was studied. The property of gold to form a layer, droplets, or particles on silicon or silicon oxide was theoretically described and experimentally demonstrated by ultrahigh vacuum
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

  • Jeremiah Croshaw,
  • Thomas Dienel,
  • Taleana Huff and
  • Robert Wolkow

Beilstein J. Nanotechnol. 2020, 11, 1346–1360, doi:10.3762/bjnano.11.119

Graphical Abstract
  • Jeremiah Croshaw Thomas Dienel Taleana Huff Robert Wolkow Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2J1, Canada Quantum Silicon, Inc., Edmonton, Alberta, T6G 2M9, Canada Department of Materials Science and Engineering, Cornell University, Ithaca NY 14853, USA
  • available via a single imaging mode. We demonstrate this through the characterization and classification of several commonly found defects of the hydrogen-terminated silicon (100)-2 × 1 surface (H–Si(100)-2 × 1) by using six unique imaging modes. The H–Si surface was chosen as it provides a promising
  • formed reducing the area available for patterning. By probing the surface using the different interactivity afforded by either hydrogen- or silicon-terminated tips, we are able to extract new insights regarding the atomic and electronic structure of these defects. This allows for the confirmation of
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • between two neighboring films of ferromagnetic layers grown using cobalt (99.95% purity). Pure silicon (99.999%) was the third target used to create a passivating layer to prevent structure oxidation. The details regarding the deposition technology were previously described [27]. The structure for the
PDF
Album
Full Research Paper
Published 07 Sep 2020

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • . In addition, Casson fluids have been implemented in the preparation of printing ink, silicon suspensions and polymers [7]. Over the past few years, a vast range of experiments and investigations have been carried out using Casson fluids due to their broad applicability in the scientific and
PDF
Album
Full Research Paper
Published 02 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • the optics is very impractical, as it requires the user to vent the chamber. Using self-sensing readout addresses these concerns [5][10][17] and also significantly improves the usability of the correlative instrument for users outside of the AFM community. The reported AFM uses silicon cantilever
  • surfaces in contact and off-resonance imaging modes, demonstrating the feasibility of the integration through a series of three experiments. Correlative AFM and HIM imaging is demonstrated in Figure 2 by imaging silicon nanopillars [30]. The HIM offers a large field of view, which allows for the cantilever
  • fabrication capabilities of the HIM [33] and studying these local defects created at the micro- and nanoscale can provide valuable information towards understanding these limitations. For example, a focused helium ion beam can locally destroy the crystalline structure of silicon and lead to the growth of
PDF
Album
Full Research Paper
Published 26 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • -patterned Ti pads (150 nm in thickness) to prevent charge effects on the insulator layer (250 nm thick of SiO2) thermally grown on a silicon wafer [23]. These chips were fabricated following a routine recipe for UV optical lithography using a lift-off method. For the electron tomography and (HR)STEM
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • , Germany 10.3762/bjnano.11.99 Abstract Tip-enhanced Raman spectroscopy is combined with polarization angle-resolved spectroscopy to investigate the nanometer-scale structural properties of core–shell silicon nanowires (crystalline Si core and amorphous Si shell), which were synthesized by platinum
  • -catalyzed vapor–liquid–solid growth and silicon overcoating by thermal chemical vapor deposition. Local changes in the fraction of crystallinity in these silicon nanowires are characterized at an optical resolution of about 300 nm. Furthermore, we are able to resolve the variations in the intensity ratios
  • local structural properties of Si nanomaterials at the sub-10 nanometer scale using tip-enhanced Raman techniques. Keywords: core–shell nanowires; local crystallinity; polarization angle-resolved spectroscopy; silicon; tip-enhanced Raman spectroscopy; Introduction The properties of silicon are long
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • tumor sites making them good candidates for MRI imaging. 300 nm SPIONs coated with dextran were cleared from the main accumulation sites (liver, spleen, lungs) after 72 h, but the same SPIONs covered with silicon were still accumulating after 72 h. Similar results were obtained using 10 nm
PDF
Album
Review
Published 27 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • power impinging on the sample was between 5 and 10 mW, the spatial resolution was 2 cm−1 and the spot size was ≈1 µm2. The samples were recorded from drops of the dispersions deposited on clean silicon wafers and left to dry under vacuum. The chemical composition of the samples was investigated using X
PDF
Album
Full Research Paper
Published 17 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • energy radiation [1][2] which is corroborated by a 6.5% rapid increase in solar cell efficiency when Sb2Se3 is present [3][4][5]. Interestingly, this high absorption coefficient is 103 times higher than the absorption in silicon [5][6][7] and encompasses a wide portion of the spectrum ranging from 1.0 eV
PDF
Album
Full Research Paper
Published 16 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • for an acquisition time of 300 s. This trade-off between power and duration of the acquisition has been chosen after a series of tests in which the power was gradually decreased from 10 mW to 100 μW. The typical peak of silicon at 521 cm−1 was used as an internal reference to normalize the intensities
PDF
Album
Full Research Paper
Published 14 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • present work is related to investigations of the interaction between nanostructured Te films and toxic gases. According to the literature, such investigations firstly have been provided utilizing the nanocrystalline Te films grown onto Pyrex glass, alumina (Al2O3), oxidized silicon or sapphire substrates
  • the high-vacuum deposition technique in order to grow Te nanotubes on silicon substrates containing previously deposited nanoparticles of silver or gold [22]. In both cases, 50 nm diameter Te nanotubes were obtained. When exposed to low concentrations of different toxic gases, including NO2, the Te
PDF
Album
Full Research Paper
Published 10 Jul 2020
Other Beilstein-Institut Open Science Activities