Search results

Search for "cell growth" in Full Text gives 74 result(s) in Beilstein Journal of Nanotechnology.

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • reduce inflammation, control infection, maintain a moist environment, promote cell growth, deliver bioactive molecules, and reduce scar formation throughout the wound healing process as shown in Figure 2B [72]. Although various materials can be used as effective dermal substitutes, this study focuses on
  • factors such as brain-derived neurotrophic factor and NGF. These growth factors increased the alignment and myelination of Schwann cells, which are critical for nerve regeneration and repair. The study also showed that the AuPBs were cell-compatible, which meant they were non-toxic and supported cell
  • growth [175]. Zhou et al. focused on the fabrication of a novel composite membrane suitable for photothermal cancer therapy based on black phosphorus (BP) nanosheets because of their high biocompatibility and photothermal efficacy. SF was used as an exfoliating agent in stable liquid exfoliation with
PDF
Album
Review
Published 24 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • cell cycle could be used as a measure of genotoxic alterations induced by any external stresses [56]. The cell cycle involves a series of highly regulated events for cell growth, DNA replication, and cell division to produce daughter cells. Graphene oxide has been found to interfere with DNA
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • effect of PEG on cell growth and its biocompatibility by inducing metabolism modulations and survival autophagy through creating an intracellular hypoxic environment. Although there is no consensus on whether the role of folate in cancer cells is protective or harmful, a cytotoxic effect was also
PDF
Album
Full Research Paper
Published 19 Feb 2025

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • not succeed in killing the cell, one may end up with stimulating cancer cell growth, and not at all with the intended outcome. Clathrin-mediated endocytosis and nanoparticle uptake Clathrin-mediated endocytosis can function as an efficient uptake mechanism for relatively small molecules and NPs. The
PDF
Album
Perspective
Published 12 Aug 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • delivery systems [1][2][3][4][5]. Because of the structural properties of nanofibers, which enable cell growth and proliferation, their use in tissue engineering, especially regarding bone tissue, is quite common [2]. Nanofiber scaffolds may carry active substances such as cells for tissue repair
PDF
Album
Review
Published 25 Jul 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • cancer cell growth, slowing their proliferation and disrupting mitotic regulation, leading to the stimulation of the tumor suppressor gene p53 and the inhibition or inactivation of various signaling pathways [31][32]. Its widespread adoption in medicine can be attributed to its strong therapeutic
PDF
Album
Full Research Paper
Published 28 Feb 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • 12 h, as mentioned in the drug-release results. Meanwhile, a notable decrease in MRSA cell growth for 24 h was clearly achieved when MRSA was treated with the BBR NPs/PLA nanofiber scaffold. In addition, the number of MRSA cells was not significantly different between 12 and 24 h, indicating that the
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • had a rounded bottom. The space between the pillars and holes were around 860 nm and 330 nm, respectively. The wettability of a surface is a good predictor of protein adsorption and bioactivity [20]. For the extracellular matrix protein laminin, good adsorption and cell growth have been found on
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • living cells, and their cytotoxicity may inhibit cell growth cycles, leading to death of organisms. Considering this fact, the cytotoxicity of TiO2 in combination with other pollutants has been evaluated. TiO2 is the most commonly manufactured nanoparticle material. It is assumed that because of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • ethanol concentration in cultures did not exceed 0.5%, which did not interfere with cell growth. The nanoparticles used in the biological tests were stored at −20 °C. Ethics committee for the use of laboratory animals The assays that used mammalian macrophages and parasites from animal models were
PDF
Album
Full Research Paper
Published 30 Aug 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • the limitations of the conjugates [68][69]. Cytotoxic or molecular targeting agents with siRNA Targeting homologous mRNA sequences in cells and knockdown of receptors involved in cell survival and proliferation using RNA interference downregulates receptor protein expression, inhibits cell growth, and
  • for silencing the expression of resistance-related genes was evidenced by a significant reduction in cell growth and increased rate of apoptosis compared to the cells treated with siRNA only. Furthermore, considering that these cell lines are EGFR-positive TKI-resistant NSCLC cells, a synergistic
PDF
Album
Review
Published 22 Feb 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • . The rough surface of the materials at the nanoscale helps cellular peptide adhesion for better stem cell growth and differentiation [12][13]. Nanomaterials have several advantages such as high surface area, increased mechanical strength, and induction of several important genes for bone tissue repair
  • . Acemannan was found to be released in a long-term manner. Furthermore, an in vitro cell interaction study on osteoblasts revealed that the produced material stimulates cell growth. In addition, in vivo investigations on a rat distal femur model show that a considerable amount of new bone has grown (Figure 2
  • –laponite nanosilicate composites was used for bone tissue engineering applications. The MC3T3-E1 osteoblasts cultured on 3D-printed scaffolds show increased cell viability, cell growth, and bone mineral formation. The SEM analysis results show that osteoblasts seeded onto methacrylate chitosan–laponite
PDF
Review
Published 29 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • spreading of Schwann cells were influenced in case of the IKVAV modification. Nevertheless, after a longer incubation time (24 h) all modified surfaces supported cell growth [152]. Another study compared the influence of different N-terminally fused RGD-containing peptides on cell behaviour (keratinocytes
PDF
Album
Review
Published 08 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • GmbH (Braunschweig, Germany) and cultured in SAGM™ (Small Airway Epithelial Cell Growth Medium BulletKit™, Lonza, Basel, Switzerland) supplemented with 1% v/v fetal calf serum (South American origin, Superior; Biochrom, Berlin, Germany) and 1% v/v antibiotics (penicillin (10.000 U/mL)/streptomycin
PDF
Album
Full Research Paper
Published 16 Aug 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • scaffolds and developed scaffolds with enhanced mechanical and functional properties [130]. In line with this, CNTs coated with methacrylated gelatin (GelMA) reinforced the mechanical properties of hybrid microgels without inhibiting cell growth [131]. The researchers also engineered cardiac patches using a
  • expression of type-I collagen mRNA. The study reported that the addition of CNT/nHA formed a porous scaffold, which was advantageous for cell growth [135]. In another study, researchers fabricated nanocomposite scaffolds through the combination of CNTs with PCL nanofibers to reinforce them for knee meniscus
PDF
Album
Review
Published 11 Apr 2022

Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

  • Tuğba Eren Böncü and
  • Nurten Ozdemir

Beilstein J. Nanotechnol. 2022, 13, 245–254, doi:10.3762/bjnano.13.19

Graphical Abstract
  • different properties with many polymers and solvents [1][2][3][4]. Drug-loaded electrospun polymeric nanofibers have many unique properties, such as accelerating healing, controlled drug release, stimulation of cell growth and proliferation due to their similarity to the extracellular matrix, large surface
PDF
Album
Full Research Paper
Published 21 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • applications, such as implants, drug delivery systems, phototherapy, antimicrobial agents, and as antidotes to snake venom. TiO2 nanomaterials have admirable potential for bone implants that favor bone cell growth, differentiation, and apatite growth. Furthermore, ROS generation by TiO2 nanoscale systems
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae)

  • Venkata A. Surapaneni,
  • Tobias Aust,
  • Thomas Speck and
  • Marc Thielen

Beilstein J. Nanotechnol. 2021, 12, 1326–1338, doi:10.3762/bjnano.12.98

Graphical Abstract
  • ]. However, cuticular ridges were still present on S. calyptrata leaf surfaces even at stage 4. Nevertheless, they were characterized by reduced height and increased spacing between the ridges (see Table 1), probably caused by cell growth (Figure 1f). The AR value decreased, but the Ra value did not vary
  • cell growth. The variation in the density of cells and ridge islands (as number of cells per square millimeter and ridge islands per square millimeter, respectively) with leaf growth is shown in Table 2. The density of the ridge islands is almost twice as that of the cells in all stages of ridge
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • internalization, the chemical sensitivity of the cancer cells, and the efficacy of the gold nanoparticles, using different types of EGFR-expressing NSCLC cancer cell lines. C225-AuNPs showed the largest inhibitory effect on cell growth and cell proliferation when the NSCLC cell line A549 with high EGFR expression
PDF
Album
Review
Published 29 Apr 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • Biotec). The absorbance was recorded at 570 nm using a microtiter plate reader (Synergy HT, BioTeK Instruments Inc). The percentage of cell growth inhibition was calculated using Equation 2: Cell cycle analysis The cell cycle was analyzed by using flow cytometry, according to the method previously
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • [23][24]. Since cells are also on the same length scale, these fibers can be used as soft biological actuators to mechanically stimulate cell growth [25]. During wet-spinning, chitosan is extruded through thin needles from acidic solutions into a coagulation bath [24]. Typical coagulants used are
  • cell behavior in vivo by applying external stimuli [41][42]. Emerging fields, such as magnetic tissue engineering, which uses magnetic levitation to control cell growth, would greatly benefit from the use of magnetic scaffolds since these would replace the need for treating the cells with magnetic iron
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • . Detailed synthesis and characterization of the polymer was earlier reported by Prof Annenkov [21]. The lung cancer cell line A549 was procured from the National Centre for Cell Sciences (NCCS), Pune. Human umbilical vein endothelial cells (HUVECs) were procured from ATCC, USA. EGMTM endothelial cell growth
PDF
Album
Full Research Paper
Published 17 Feb 2020
Other Beilstein-Institut Open Science Activities